
For Use with MATLAB®

User’s Guide
Version 1

Image Acquisition
Toolbox

How to Contact The MathWorks:

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup

support@mathworks.com Technical support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 Phone

508-647-7001 Fax

The MathWorks, Inc. Mail
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.

Image Acquisition Toolbox User’s Guide
 COPYRIGHT 2003 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or repro-
duced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by
or for the federal government of the United States. By accepting delivery of the Program, the government
hereby agrees that this software qualifies as "commercial" computer software within the meaning of FAR
Part 12.212, DFARS Part 227.7202-1, DFARS Part 227.7202-3, DFARS Part 252.227-7013, and DFARS Part
252.227-7014. The terms and conditions of The MathWorks, Inc. Software License Agreement shall pertain
to the government’s use and disclosure of the Program and Documentation, and shall supersede any
conflicting contractual terms or conditions. If this license fails to meet the government’s minimum needs or
is inconsistent in any respect with federal procurement law, the government agrees to return the Program
and Documentation, unused, to MathWorks.

MATLAB, Simulink, Stateflow, Handle Graphics, and Real-Time Workshop are registered trademarks, and
TargetBox is a trademark of The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective holders.

Printing History: March 2003 First printing New for Version 1.0 (Release 13+)
September 2003 Online Only Revised for Version 1.1 (Release 13SP1)

Contents
Preface

What Is the Image Acquisition Toolbox? x

Related Products . xi

Configuration Notes . xii

About the Documentation . xiii
Structure of the Documentation . xiii

Typographical Conventions . xiv

1
Getting Started

Example: Basic Image Acquisition Procedure 1-2
Overview . 1-2
Step 1: Install Your Image Acquisition Device 1-3
Step 2: Retrieve Hardware Information 1-3
Step 3: Create a Video Input Object . 1-6
Step 4: Preview the Video Stream (Optional) 1-8
Step 5: Configure Object Properties (Optional) 1-10
Step 6: Acquire Image Data . 1-13
Step 7: Clean Up . 1-16
i

ii Contents
2
Introduction

Overview . 2-2
Toolbox Components . 2-2
System Requirements . 2-3

Setting Up Image Acquisition Hardware 2-4
Resetting Your Image Acquisition Hardware 2-4
A Note About Frame Rates and Processing Speed 2-5

Previewing Data . 2-6
Opening a Preview Window . 2-6
Closing a Preview Window . 2-7

Troubleshooting . 2-8
Troubleshooting Matrox Hardware . 2-8
Troubleshooting Data Translation Hardware 2-10
Troubleshooting Windows Video Hardware 2-10
Troubleshooting a Preview Window . 2-13

3
Connecting to Hardware

Getting Hardware Information . 3-2
Determining the Device Adaptor Name 3-2
Determining the Device ID . 3-4
Determining Supported Video Formats 3-6

Creating Image Acquisition Objects . 3-9
Creating a Video Input Object . 3-10
Specifying the Video Format . 3-12
Specifying the Selected Video Source Object 3-15

Configuring Image Acquisition Object Properties 3-17
Viewing the Values of Object Properties 3-17
Viewing the Value of a Particular Property 3-20

Getting Information About Object Properties 3-20
Setting the Value of an Object Property 3-21

Starting and Stopping a Video Input Object 3-24

Deleting Image Acquisition Objects . 3-27

Saving and Loading Image Acquisition Objects 3-29

4
Acquiring Image Data

Overview . 4-2
Trigger Properties . 4-3

Setting the Values of Trigger Properties 4-5
Specifying Trigger Type, Source, and Condition 4-5

Specifying the Trigger Type . 4-7
Example: Using an Immediate Trigger 4-8
Example: Using a Manual Trigger . 4-10
Example: Using a Hardware Trigger . 4-12

Controlling Logging Parameters . 4-16
Specifying Logging Mode . 4-16
Specifying the Number of Frames to Log 4-17
Determining How Much Data Has Been Logged 4-19
Determining How Many Frames Are Available 4-20
Delaying Data Logging After a Trigger 4-24
Specifying Multiple Triggers . 4-25

Waiting for an Acquisition to Finish 4-26

Managing Memory Usage . 4-28
Monitoring Memory Usage . 4-28
Modifying the Frame Memory Limit . 4-29
Freeing Memory . 4-29
iii

iv Contents
Logging Image Data to Disk . 4-32
Creating an AVI File Object for Logging 4-33
Example: Logging Data to Disk . 4-35

5
Working with Acquired Image Data

Overview . 5-2

Bringing Image Data into the MATLAB Workspace 5-3
Moving Multiple Frames into the Workspace 5-3
Viewing Frames in the Memory Buffer 5-6
Bringing a Single Frame into the Workspace 5-10

Working with Image Data in the MATLAB Workspace . . . 5-12
Determining the Dimensions of Image Data 5-13
Determining the Data Type of Image Frames 5-16
Determining the Color Space . 5-17
Viewing Acquired Data . 5-18

Retrieving Timing Information . 5-19
Determining When a Trigger Executed 5-19
Determining When a Frame Was Acquired 5-20
Example: Determining the Frame Delay Duration 5-21

6
Using Events and Callbacks

Example: Using the Default Callback Function 6-2

Event Types . 6-4

Retrieving Event Information . 6-6
Event Structures . 6-6

Example: Accessing Data in the Event Log 6-8

Creating and Executing Callback Functions 6-11
Creating Callback Functions . 6-11
Specifying Callback Functions . 6-13
Example: Viewing a Sample Frame . 6-15
Example: Monitoring Memory Usage . 6-16

7
Function Reference

Getting Command Line Function Help 7-2

Functions — By Category . 7-3
clear . 7-6
closepreview . 7-7
delete . 7-8
disp . 7-9
flushdata . 7-11
get . 7-12
getdata . 7-13
getselectedsource . 7-17
getsnapshot . 7-18
imaqfind . 7-20
imaqhelp . 7-22
imaqhwinfo . 7-24
imaqmem . 7-27
imaqmontage . 7-29
imaqreset . 7-30
isvalid . 7-31
load . 7-32
peekdata . 7-33
preview . 7-35
propinfo . 7-36
save . 7-38
set . 7-39
start . 7-41
v

vi Contents
stop . 7-43
trigger . 7-44
triggerconfig . 7-45
triggerinfo . 7-47
videoinput . 7-49
wait . 7-52

8
Property Reference

Properties – By Category . 8-2
Video Input Object Properties . 8-2
Video Source Object Properties . 8-6
DeviceID . 8-7
DiskLogger . 8-9
DiskLoggerFrameCount . 8-11
ErrorFcn . 8-12
EventLog . 8-13
FrameGrabInterval . 8-15
FramesAcquired . 8-17
FramesAcquiredFcn . 8-18
FramesAcquiredFcnCount . 8-19
FramesAvailable . 8-20
FramesPerTrigger . 8-21
InitialTriggerTime . 8-22
Logging . 8-24
LoggingMode . 8-25
Name . 8-26
NumberOfBands . 8-27
Parent . 8-29
Previewing . 8-30
ReturnedColorSpace . 8-31
ROIPosition . 8-32
Running . 8-34
Selected . 8-35
SelectedSourceName . 8-37
Source . 8-38

SourceName . 8-40
StartFcn . 8-41
StopFcn . 8-42
Tag . 8-43
Timeout . 8-44
TimerFcn . 8-45
TimerPeriod . 8-46
TriggerCondition . 8-47
TriggerFcn . 8-48
TriggerFrameDelay . 8-49
TriggerRepeat . 8-50
TriggersExecuted . 8-52
TriggerSource . 8-53
TriggerType . 8-54
Type . 8-55
UserData . 8-56
VideoFormat . 8-57
VideoResolution . 8-59

Index
vii

viii Contents

Preface

This chapter introduces you to the Image Acquisition Toolbox and describes conventions used by the
documentation.

What Is the Image Acquisition
Toolbox? (p. x)

Introduces the Image Acquisition Toolbox and its
capabilities

Related Products (p. xi) Highlights other MathWorks products that are related to
image acquisition

Configuration Notes (p. xii) Provides some information about installing and
configuring the Image Acquisition Toolbox

About the Documentation (p. xiii) Describes the structure of the Image Acquisition Toolbox
documentation

Typographical Conventions (p. xiv) Lists typographical conventions used in the
documentation

 Preface

x

What Is the Image Acquisition Toolbox?
The Image Acquisition Toolbox is a collection of functions that extend the
capability of the MATLAB® numeric computing environment. The toolbox
supports a wide range of image acquisition operations, including

• Acquiring images through many types of image acquisition devices, from
professional grade frame grabbers to USB-based Webcams.

• Viewing a preview of the live video stream

• Triggering acquisitions (includes external hardware triggers)

• Configuring callback functions that execute when certain events occur

• Bringing the image data into the MATLAB workspace

Many of the toolbox functions are MATLAB M-files. You can view the MATLAB
code for these functions using the statement

type function_name

You can extend the capabilities of the Image Acquisition Toolbox by writing
your own M-files, or by using the toolbox in combination with other toolboxes,
such as the Image Processing Toolbox and the Data Acquisition Toolbox.

Related Products
Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with the Image Acquisition Toolbox.

For more information about any of these products, see either

• The online documentation for that product if it is installed or if you are
reading the documentation from the CD

• The MathWorks Web site, at http://www.mathworks.com; see the “products”
section

The toolboxes listed below all include functions that extend the capabilities of
MATLAB and are complementary to the Image Acquisition Toolbox.

Product Description

Data Acquisition Toolbox Acquire and send out data from plug-in data
acquisition boards

Image Processing
Toolbox

Perform image processing, analysis, and
algorithm development

Instrument Control
Toolbox

Control and communicate with test and
measurement instruments
xi

 Preface

xii
Configuration Notes
To determine if the Image Acquisition Toolbox is installed on your system, type
this command at the MATLAB prompt.

ver

When you enter this command, MATLAB displays information about the
version of MATLAB you are running, including a list of all toolboxes installed
on your system and their version numbers.

For information about installing the toolbox, see the MATLAB Installation
Guide for your platform.

For the most up-to-date information about system requirements, see the
system requirements page, available in the products area at The MathWorks
Web site (www.mathworks.com).

About the Documentation
About the Documentation
This section describes the structure of the Image Acquisition Toolbox
documentation.

Structure of the Documentation
The documentation is organized as follows:

• Chapter 1, “Getting Started,” introduces the toolbox by stepping through a
simple example.

• Chapter 2, “Introduction,” describes the components of the Image
Acquisition Toolbox and setting up image acquisition hardware.

• Chapter 3, “Connecting to Hardware,” describes how you connect MATLAB
to an image acquisition device by creating a video input object.

• Chapter 4, “Acquiring Image Data,” describes how you trigger the
acquisition of image frames. The toolbox supports several types of triggers.

• Chapter 5, “Working with Acquired Image Data,” describes how you access
logged image data and bring it into the MATLAB workspace where you can
work with it.

• Chapter 6, “Using Events and Callbacks,” describes how to use event
callbacks to enhance the functioning of your application.

• Chapter 7, “Function Reference,” provides reference information about the
functions provided by the Image Acquisition Toolbox.

• Chapter 8, “Property Reference,” provides reference information about the
properties of the video input and video source objects.
xiii

 Preface

xiv
Typographical Conventions

Item Convention Example

Example code Monospace font To assign the value 5 to A,
enter

A = 5

Function names, syntax,
filenames, directory/folder
names, user input, items in
drop-down lists

Monospace font The cos function finds the
cosine of each array element.
Syntax line example is
MLGetVar ML_var_name

Buttons and keys Boldface with book title caps Press the Enter key.

Literal strings (in syntax
descriptions in reference
chapters)

Monospace bold for literals f = freqspace(n,'whole')

Mathematical
expressions

Italics for variables
Standard text font for functions,
operators, and constants

This vector represents the
polynomial p = x2 + 2x + 3.

MATLAB output Monospace font MATLAB responds with
A =

5

Menu and dialog box titles Boldface with book title caps Choose the File Options
menu.

New terms and for
emphasis

Italics An array is an ordered
collection of information.

Omitted input arguments (...) ellipsis denotes all of the
input/output arguments from
preceding syntaxes.

[c,ia,ib] = union(...)

String variables (from a
finite list)

Monospace italics sysc = d2c(sysd,'method')

1

Getting Started

The best way to learn about the capabilities of the Image Acquisition Toolbox is to look at a simple
example. This chapter illustrates the basic steps required to create an image acquisition application
by implementing a simple motion detection application. The example contains cross-references to
other sections in the documentation that provide more in-depth discussions of the relevant concepts.

Example: Basic Image Acquisition
Procedure (p. 1-2)

Presents a step-by-step approach to using the toolbox to
create an image acquisition application

1 Getting Started

1-2
Example: Basic Image Acquisition Procedure
This section illustrates the basic steps required to create an image acquisition
application by implementing a simple motion detection application. The
application detects movement in a scene by performing a pixel-to-pixel
comparison in pairs of incoming image frames. If nothing moves in the scene,
pixel values remain the same in each frame. When something moves in the
image, the application displays the pixels that have changed values.

The example highlights how you can use the Image Acquisition Toolbox to
create a working image acquisition application with only a few lines of code.

Note To run the sample code in this example, you must have an image
acquisition device connected to your system. The device can be a professional
grade image acquisition device, such as a frame grabber, or a generic Windows
image acquisition device, such as a Webcam. The code can be used with
various types of devices with only minor changes.

Overview
To use the Image Acquisition Toolbox to acquire image data, you must perform
the following basic steps:

The following sections implement each step.

Step 1: Install and configure your image acquisition device

Step 2: Retrieve information that uniquely identifies your image
acquisition device to the Image Acquisition Toolbox

Step 3: Create a video input object

Step 4: Preview the video stream (Optional)

Step 5: Configure image acquisition object properties (Optional)

Step 6: Acquire image data

Step 7: Clean up

Example: Basic Image Acquisition Procedure
Step 1: Install Your Image Acquisition Device
Follow the setup instructions that come with your image acquisition device.
Setup typically involves

• Installing the frame grabber board in your computer.

• Installing any software drivers required by the device. These are supplied by
the device vendor.

• Connecting a camera to a connector on the frame grabber board.

• Verifying that the camera is working properly by running the application
software that came with the camera and viewing a live video stream.

Generic Windows image acquisition devices, such as Webcams and digital
video camcorders, typically do not require the installation of a frame grabber
board. You connect these devices directly to your computer via a USB or
FireWire port.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to perform image
acquisition.

Step 2: Retrieve Hardware Information
In this step, you get several pieces of information that the toolbox needs to
uniquely identify the image acquisition device you want to access. You use this
information when you create an image acquisition object, described in “Step 3:
Create a Video Input Object” on page 1-6. The following table lists this
information. You use the imaqhwinfo function to retrieve each item.
1-3

1 Getting Started

1-4
.

Adaptor Name
To determine the name of the adaptor, enter the imaqhwinfo function at the
MATLAB prompt without any arguments.

imaqhwinfo
ans =

InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '6.5.1 (R13+)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.0 (R13+)'

Adaptor name An adaptor is the software that the toolbox uses to
communicate with an image acquisition device via its
device driver. The toolbox includes adaptors for certain
vendors of image acquisition equipment and for
particular classes of image acquisition devices. See
“Adaptor Name” on page 1-4 for more information.

Device ID The device ID is a number that the adaptor assigns to
uniquely identify each image acquisition device with
which it can communicate. See “Device ID” on page 1-5
for more information.

Note: Specifying the device ID is optional; the toolbox
uses the first available device ID as the default.

Video format The video format specifies the image resolution (width
and height) and other aspects of the video stream.
Image acquisition devices typically support multiple
video formats. See “Video Formats” on page 1-6 for
more information.

Note: Specifying the video format is optional; the
toolbox uses one of the supported formats as the
default.

Example: Basic Image Acquisition Procedure
In the data returned by imaqhwinfo, the InstalledAdaptors field lists the
adaptors that are available on your computer. In this example, imaqhwinfo
found two adaptors available on the computer: 'matrox' and 'winvideo'. The
listing on your computer might contain only one adaptor name. Select the
adaptor name that provides access to your image acquisition device. For more
information, see “Determining the Device Adaptor Name” on page 3-2.

Device ID
To find the device ID of a particular image acquisition device, enter the
imaqhwinfo function at the MATLAB prompt, specifying the name of the
adaptor as the only argument. (You found the adaptor name in the first call to
imaqhwinfo, described in “Adaptor Name” on page 1-4.)

Note This example uses the adaptor for Matrox devices. You should
substitute the name of the adaptor you would like to use.

info = imaqhwinfo('matrox')
info =

AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '1.0 (R13+)'
 AdaptorName: 'matrox'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

In the data returned, the DeviceIDs field is a cell array containing the device
IDs of all the devices accessible through the specified adaptor.

Getting More Information About a Device. You can get more information about a
particular device in the DeviceInfo field. This field is a structure array where
each structure describes a particular device. This can be helpful if there is more
than one device listed in DeviceIDs. To view the device information for a
particular adaptor, reference the structure in the array or enter the
imaqhwinfo function at the MATLAB prompt, specifying the adaptor name and
device ID as arguments.
1-5

1 Getting Started

1-6
dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
 DeviceFileSupported: 1
 DeviceName: 'Orion'
 DeviceID: 1
 ObjectConstructor: 'videoinput('matrox', 1)'
 SupportedFormats: {1x10 cell}

Video Formats
You can optionally specify the video format of the video input object. To
determine which video formats an image acquisition device supports, look in
the SupportedFormats field of the DeviceInfo structure returned by the
imaqhwinfo function. For more information, see “Determining Supported Video
Formats” on page 3-6.

The example application uses the default video format.

Step 3: Create a Video Input Object
In this step you create the video input object that the toolbox uses to represent
the connection between MATLAB and an image acquisition device. Using the
properties of a video input object, you can control many aspects of the image
acquisition process.

To create a video input object, enter the videoinput function at the MATLAB
prompt. The videoinput function uses the adaptor name, device ID, and video
format that you retrieved in step 2 to create the object. The adaptor name is the
only required argument; the videoinput function can use defaults for the
device ID and video format. For more information about image acquisition
objects, see Chapter 3, “Connecting to Hardware.”

vid = videoinput('matrox');

Example: Basic Image Acquisition Procedure
Note Substitute the adaptor name of the image acquisition device available
on your system. To find the default videoinput function syntax for a device,
look at the ObjectConstructor field of the DeviceInfo structure returned by
the imaqhwinfo function. For more information, see “Getting More
Information About a Device” on page 1-5.

To view a summary of the video input object you just created, enter vid at the
MATLAB command prompt. The summary information shows many of the
characteristics of the object, such as the number of frames that will be captured
with each trigger, the trigger type, and the current state of the object. You can
use video input object properties to control many of these characteristics. See
“Step 5: Configure Object Properties (Optional)” on page 1-10 for more
information.

vid

Summary of Video Input Object Using 'Orion'.

 Acquisition Source(s): CH0, CH1, CH2, CH3, CH4, CH5, CH6, and
 CH7 are available.

 Acquisition Parameters: 'CH0' is the current selected source.
 10 frames per trigger using the selected source.
 'M_RS170' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.
1-7

1 Getting Started

1-8
Specifying the Video Format
This example does not specify the video format of the video input object; it uses
the default video format selected by the toolbox. The default video format is
listed in the DefaultFormat field of the DeviceInfo structure. If you want to
use a different video format, you must specify the format when you create the
object. See “Determining Supported Video Formats” on page 3-6 for more
information.

Step 4: Preview the Video Stream (Optional)
After you create the video input object, MATLAB is able to access the image
acquisition device and is ready to acquire data. However, before you begin, you
might want to see a preview of the video stream to make sure that the image is
satisfactory. For example, you might want to change the position of the camera,
change the lighting, correct the focus, or make some other change to your image
acquisition setup.

Note This step is optional at this point in the procedure because you can
preview a video stream at any time after you create a video input object.

To preview the video stream in this example, enter the preview function at the
MATLAB prompt, specifying the video input object created in step 3 as an
argument.

preview(vid)

The preview function opens a window on your screen and displays a window
containing the live video stream. While a preview window is open, the object
sets the value of the Previewing property to 'on'. If you change characteristics
of the image by setting image acquisition object properties, the image displayed
in the preview window reflects the change. The following figure shows the
preview window for the example.

Example: Basic Image Acquisition Procedure
Preview Window

To close the preview window, click the Close button in the title bar or use the
closepreview function, specifying the video input object as an argument.

closepreview(vid)

Live
video
image

Timestamp of
current frame
being displayed

Resolution State of the video input object

Name of image
acquisition device
adaptor and device ID
1-9

1 Getting Started

1-1
Step 5: Configure Object Properties (Optional)
After creating the video input object and previewing the video stream, you
might want to modify characteristics of the image or other aspects of the
acquisition process. You accomplish this by setting the values of image
acquisition object properties. This section

• Describes the types of image acquisition objects used by the toolbox

• Describes how to view all the properties supported by these objects, with
their current values

• Describes how to set the values of object properties

Types of Image Acquisition Objects
The toolbox uses two types of objects to represent the connection with an image
acquisition device:

• Video input objects

• Video source objects

A video input object represents the connection between MATLAB and a video
acquisition device at a high level. The properties supported by the video input
object are the same for every type of device. You created a video input object
using the videoinput function in step 3.

When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify. At any one
time, only one of the video source objects, called the selected source, can be
active. This is the source used for acquisition. For more information about
these image acquisition objects, see “Creating Image Acquisition Objects” on
page 3-9.

Viewing Object Properties
To view a complete list of all the properties supported by a video input object
or a video source object, use the get function. To list the properties of the video
input object created in step 3, enter this code at the MATLAB prompt.

get(vid)
0

Example: Basic Image Acquisition Procedure
The get function lists all the properties of the object with their current values.

General Settings:
 DeviceID = 1
 DiskLogger = []
 DiskLoggerFrameCount = 0
 EventLog = [1x0 struct]
 FrameGrabInterval = 1
 FramesAcquired = 0
 FramesAvailable = 0
 FramesPerTrigger = 10
 Logging = off
 LoggingMode = memory
 Name = M_RS170-matrox-1
 NumberOfBands = 1
 Previewing = on
 ReturnedColorSpace = grayscale
 ROIPosition = [0 0 640 480]
 Running = off
 Tag =
 Timeout = 10
 Type = videoinput

.

.

.

To view the properties of the currently selected video source object associated
with this video input object, use the getselectedsource function in
conjunction with the get function. The getselectedsource function returns
the currently active video source. To list the properties of the currently selected
video source object associated with the video input object created in step 3,
enter this code at the MATLAB prompt.

get(getselectedsource(vid))

The get function lists all the properties of the object with their current values.
1-11

1 Getting Started

1-1
Note Video source object properties are device specific. The list of properties
supported by the device connected to your system might differ from the list
shown in this example.

General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = CH0
 Tag =
 Type = videosource

 Device Specific Properties:
 InputFilter = none
 UserOutputBit3 = on
 UserOutputBit4 = on
 XScaleFactor = 1
 YScaleFactor = 1

Setting Object Properties
To set the value of a video input object property or a video source object
property, you can use the set function or you can reference the object property
as you would a field in a structure, using dot notation.

Some properties are read only; you cannot set their values. These properties
typically provide information about the state of the object. Other properties
become read only when the object is running. To view a list of all the properties
you can set, use the set function, specifying the object as the only argument.

To implement continuous image acquisition, the example sets the
TriggerRepeat property to Inf. To set this property using the set function,
enter this code at the MATLAB prompt.

set(vid,'TriggerRepeat',Inf);

To help the application keep up with the incoming video stream while
processing data, the example sets the FrameGrabInterval property to 5. This
specifies that the object acquire every fifth frame in the video stream. (You
might need to experiment with the value of the FrameGrabInterval property
to find a value that provides the best response with your image acquisition
2

Example: Basic Image Acquisition Procedure
setup.) This example shows how you can set the value of an object property by
referencing the property as you would reference a field in a MATLAB structure.

vid.FrameGrabInterval = 5;

To set the value of a video source object property, you must first use the
getselectedsource function to retrieve the object. (You can also get the
selected source by searching the video input object Source property for the
video source object that has the Selected property set to 'on'.)

To illustrate, the example assigns a value to the Tag property.

vid_src = getselectedsource(vid);

set(vid_src,'Tag','motion detection setup');

Step 6: Acquire Image Data
After you create the video input object and configure its properties, you can
acquire data. This is typically the core of any image acquisition application,
and it involves these steps:

• Starting the video input object — You start an object by calling the start
function. Starting an object prepares the object for data acquisition. For
example, starting an object locks the values of certain object properties (they
become read only). Starting an object does not initiate the acquiring of image
frames, however. The initiation of data logging depends on the execution of
a trigger.

The example calls the start function to start the video input object. Objects
stop when they have acquired the requested number of frames. Because the
example specifies a continuous acquisition, you must call the stop function
to stop the object.

• Triggering the acquisition — To acquire data, a video input object must
execute a trigger. Triggers can occur in several ways, depending on how the
TriggerType property is configured. For example, if you specify an
immediate trigger, the object executes a trigger automatically, immediately
after it starts. If you specify a manual trigger, the object waits for a call to
1-13

1 Getting Started

1-1
the trigger function before it initiates data acquisition. For more
information, see Chapter 4, “Acquiring Image Data.”

In the example, because the TriggerType property is set to 'immediate' (the
default) and the TriggerRepeat property is set to Inf, the object
automatically begins executing triggers and acquiring frames of data,
continuously.

• Bringing data into the MATLAB workspace — The toolbox stores acquired
data in a memory buffer, a disk file, or both, depending on the value of the
video input object LoggingMode property. To work with this data, you must
bring it into the MATLAB workspace. To bring multiple frames into the
workspace, use the getdata function. Once the data is in the MATLAB
workspace, you can manipulate it as you would any other data. For more
information, see Chapter 5, “Working with Acquired Image Data.”

Note The toolbox provides a convenient way to acquire a single frame of
image data that doesn’t require starting or triggering the object. See
“Bringing a Single Frame into the Workspace” on page 5-10 for more
information.

To run the example, enter this code at the MATLAB prompt.The example loops
until a specified number of frames have been acquired. In each loop iteration,
the example calls getdata to bring the two most recent frames into the
MATLAB workspace. To detect motion, the example subtracts one frame from
the other, creating a difference image, and then displays it. Pixels that have
changed values in the acquired frames will have nonzero values in the
difference image.

The getdata function removes frames from the memory buffer when it brings
them into the MATLAB workspace. It is important to move frames from the
memory buffer into the MATLAB workspace in a timely manner. If you do not
move the acquired frames from memory, you can quickly exhaust all the
memory available on your system.

The application creates a MATLAB figure and sets the DoubleBuffer property.
This is not directly related to image acquisition but is included to ensure a
smooth display.
4

Example: Basic Image Acquisition Procedure
Note The application uses functions in the Image Processing Toolbox.

figure; % Ensure smooth display
set(gcf,'doublebuffer','on');

start(vid)

while(vid.FramesAcquired<=100)
 data = getdata(vid,2);
 diff_im = imabsdiff(data(:,:,:,1),data(:,:,:,2));
 imshow(diff_im);
end

stop(vid)

The following figure shows how the example displays detected motion. In the
figure, areas representing movement are displayed.

Figure Window Displayed by Application
1-15

1 Getting Started

1-1
Image Data in the MATLAB Workspace
In the example, the getdata function returns a 480-by-640-by-1-by-10 array of
8-bit data (uint8). The height and width of the array are primarily determined
by the video resolution of the video format. On systems that support the
definition of a region-of-interest (ROI), the values of the ROIPosition property
can supersede the video resolution.

The third dimension represents the number of color bands in the image.
Because the example data is a grayscale image, the third dimension is 1. For
RGB formats, image frames have three bands: red is the first, green is the
second, and blue is the third. The fourth dimension represents the number of
frames that have been acquired from the video stream.

Note Devices typically express video resolution as column-by-row; MATLAB
expresses matrix dimensions as row-by-column.

whos
 Name Size Bytes Class

data 4-D 3072000 uint8 array
 dev_info 1x1 1601 struct array
 info 1x1 2467 struct array
 vid 1x1 1138 videoinput object
 vid_src 1x1 726 videosource object

Step 7: Clean Up
When you finish using your image acquisition objects, you can remove them
from memory and clear the MATLAB workspace of the variables associated
with these objects.

delete(vid)
clear
close(gcf)

For more information, see “Deleting Image Acquisition Objects” on page 3-27.
6

2

Introduction

This chapter describes the Image Acquisition Toolbox and its components.

Overview (p. 2-2) Provides an overview of the Image Acquisition Toolbox

Setting Up Image Acquisition
Hardware (p. 2-4)

Describes how to set up your image acquisition device

Previewing Data (p. 2-6) Describes how to view the incoming video stream,
without actually acquiring data

Troubleshooting (p. 2-8) Provides some helpful tips on diagnosing problems you
might encounter using the toolbox

2 Introduction

2-2
Overview
The Image Acquisition Toolbox is a collection of functions that extend the
capability of the MATLAB® numeric computing environment.

The Image Acquisition Toolbox implements an object-oriented approach to
image acquisition. Using toolbox functions, you create an object that represents
the connection between MATLAB and specific image acquisition devices. Using
properties of the object you can control various aspects of the acquisition
process, such as the amount of video data you want to capture. Chapter 3,
“Connecting to Hardware,” describes how to create objects.

Once you establish a connection to a device, you can acquire image data by
executing a trigger. In the toolbox, all image acquisition is initiated by a
trigger. The toolbox supports several types of triggers that let you control when
an acquisition takes place. For example, using hardware triggers you can
synchronize an acquisition with an external device. Chapter 4, “Acquiring
Image Data,” describes how to trigger the acquisition of image data.

To work with the data you acquire, you must bring it into the MATLAB
workspace. When the frames are acquired, the toolbox stores them in a memory
buffer. The toolbox provides several ways to bring one or more frames of data
into the workspace where you can manipulate it as you would any other
multidimensional numeric array. Chapter 5, “Working with Acquired Image
Data,” describes this process.

Finally, you can enhance your image acquisition application by using event
callbacks. The toolbox has defined certain occurrences, such as the triggering
of an acquisition, as events. You can associate the execution of a particular
function with a particular event. Chapter 6, “Using Events and Callbacks,”
describes this process.

Toolbox Components
The toolbox uses components called hardware device adaptors to connect to
devices through their drivers. The toolbox includes adaptors that support
devices produced by several vendors of image acquisition equipment. In
addition, the toolbox includes an adaptor for generic Windows video acquisition
devices.

The following figure shows these components and their relationship.

Overview
.

Image Acquisition Toolbox Components

System Requirements
The Image Acquisition Toolbox supports vendors of professional grade image
acquisition equipment, such as Matrox and Data Translation. In addition, the
toolbox supports many Windows video acquisition devices that provide WDM
(Windows Driver Model) or VFW (Video for Windows) drivers, such as USB and
FireWire (IEEE1394, i.LINK®) Web cameras, digital video (DV) camcorders,
and TV tuner cards.

For the latest information about supported hardware, visit the Image
Acquisition Toolbox product page at The MathWorks Web site
(www.mathworks.com/products/imaq).

MATLAB

Image Acquisition Toolbox

M-file Functions

Hardware Driver Adaptor

Hardware Device Driver

IEEE-1394
(FireWire)

PCIUSB

USB
Source

Frame
Grabber

FireWire
Source
2-3

2 Introduction

2-4
Setting Up Image Acquisition Hardware
In a typical image acquisition setup, an image acquisition device, such as a
camera, is connected to a computer via an image acquisition board, such as a
frame grabber, or via a Universal Serial Bus (USB) port or FireWire
(IEEE-1394) port.

To acquire image data, you must perform the setup required by your particular
image acquisition device.

For frame grabbers, also known as imaging boards, setup typically involves the
following tasks:

• Installing an image acquisition board in your computer

• Installing any software drivers required by the device. These are supplied by
the device vendor.

• Connecting the camera, or other image acquisition device, to the imaging
board connector

• Verifying that the camera is working properly by running the application
software that came with the camera and viewing a live video stream

Setup for generic Windows video acquisition devices is the same except these
devices typically do not require the installation of an image acquisition board.
These devices connect directly to the USB or FireWire port on your system.

After installing and configuring your image acquisition hardware, start
MATLAB on your computer by double-clicking the icon on your desktop. You
do not need to perform any special configuration of MATLAB to acquire data.

Resetting Your Image Acquisition Hardware
To return MATLAB and your image acquisition hardware to a known state,
where no image acquisition objects exist and the hardware is not configured,
use the imaqreset function.

If you connect another image acquisition device to your system after MATLAB
is started, you can use imaqreset to make the toolbox aware of the new
hardware.

Setting Up Image Acquisition Hardware
A Note About Frame Rates and Processing Speed
The frame rate describes how fast an image acquisition device provides data,
typically measured as frames per second.

Devices that support industry-standard video formats must provide frames at
the rate specified by the standard. For RS170 and NTSC, the standard dictates
a frame rate of 30 frames per second (30 Hz). The CCIR and PAL standards
define a frame rate of 25 Hz. Nonstandard devices can be configured to operate
at higher rates. Generic Windows image acquisition devices, such as Webcams,
might support many different frame rates. Depending on the device being used,
the frame rate might be configurable using a device-specific property of the
image acquisition object.

The rate at which the Image Acquisition Toolbox can process images depends
on the processor speed, the complexity of the processing algorithm, and the
frame rate. Given a fast processor, a simple algorithm, and a frame rate tuned
to the acquisition setup, the Image Acquisition Toolbox can process data as it
comes in.
2-5

2 Introduction

2-6
Previewing Data
After you connect MATLAB to the image acquisition device (see “Connecting to
Hardware” on page 3-1), you can view the video stream using the Image
Acquisition Toolbox preview window. Previewing the video stream can be
helpful to make sure that the image being captured is satisfactory. For
example, by looking at a preview, you can verify that the lighting and focus are
correct. (To change aspects of the image, you must use properties of the video
input object. See “Configuring Image Acquisition Object Properties” on
page 3-17 for more information.)

This section describes how to

• Open a preview window

• Close a preview window

Opening a Preview Window
To open a preview window, use the preview function. This window displays a
view of the live video stream.

You can open multiple preview windows at the same time to view images being
returned by different image acquisition devices. If you change characteristics
of the image, by setting image acquisition object properties, the image
displayed in the preview window reflects the change.

The following example opens a preview window for the video input object vid.

preview(vid);

Previewing Data
Closing a Preview Window
To close a particular preview window, use the closepreview function,
specifying the video input object as an argument.

closepreview(vid)

To close all currently open preview windows, use the closepreview function
without any arguments.

closepreview

Name of image
acquisition device
adaptor and device ID

Live video image

Timestamp of
last frame

Resolution State of the video input object
2-7

2 Introduction

2-8
Troubleshooting
If, after installing the Image Acquisition Toolbox and using it to establish a
connection to your image acquisition device, you are unable to acquire data or
encounter other problems, try these troubleshooting steps first. They might
help fix the problem.

1 Verify that your image acquisition hardware is functioning properly.

2 If the hardware is functioning properly, verify that you are using a hardware
device driver that is compatible with the Image Acquisition Toolbox.

The following sections describe how to perform these steps for Matrox devices,
Data Translation devices, and generic Windows video acquisition devices.

If you are encountering problems with the preview window, see
“Troubleshooting a Preview Window” on page 2-13.

Troubleshooting Matrox Hardware
If you are having trouble using the Image Acquisition Toolbox with a supported
Matrox frame grabber, perform these troubleshooting steps, in the order
specified.

1 Verify that your image acquisition hardware is functioning properly.

For Matrox devices, run the application that came with your hardware,
Matrox Intellicam, and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

The Image Acquisition Toolbox is only compatible with specific driver
versions provided with the Matrox Imaging Library (MIL) or MIL-Lite
software and is not guaranteed to work with any other versions. Find out
which driver version you are using on your system. (See “Determining the
Driver Version for Matrox Devices” on page 2-9 to learn how.) Verify that the
version is compatible with the Image Acquisition Toolbox by checking the
list of supported drivers on the Image Acquisition Toolbox product page at
The MathWorks Web site (www.mathworks.com/products/imaq). If you

Troubleshooting
discover that you are using an unsupported driver, visit the Matrox Web site
(www.matrox.com) to download the latest drivers.

Determining the Driver Version for Matrox Devices
To determine which Matrox Imaging Library version you are using, run the
Matrox MIL Configuration utility. You can access this software through the
Windows Start button.

Select Start->Programs->Matrox Imaging Products->MIL Configuration.

The software version is listed on the Information tab.

Matrox MIL Configuration Utility

Device driver
version
2-9

2 Introduction

2-1
Troubleshooting Data Translation Hardware
If you are having trouble using the Image Acquisition Toolbox with a supported
Data Translation frame grabber, perform these troubleshooting steps, in the
order specified.

1 Verify that your image acquisition hardware is functioning properly.

For Data Translation devices, run the application that came with your
hardware and verify that you can receive live video.

2 If your hardware is functioning properly, verify that you are using a
hardware device driver that is compatible with the toolbox.

The Image Acquisition Toolbox is only compatible with specific driver
versions provided by Data Translation with the Imaging Omni CD and is not
guaranteed to work with any other versions. Determine which driver
version you are using on your system and verify that the version is
compatible with the Image Acquisition Toolbox by checking the list of
supported drivers on the Image Acquisition Toolbox product page at The
MathWorks Web site (www.mathworks.com/products/imaq). If you discover
that you are using an unsupported driver, visit the Data Translation Web
site (www.datatranslation.com) to download the latest drivers.

Troubleshooting Windows Video Hardware
If you are having trouble using the Image Acquisition Toolbox with a supported
Windows video acquisition device, perform these recommended
troubleshooting steps, in the order specified.

1 Verify that your image acquisition hardware is functioning properly.

For Windows devices, run the application that came with your hardware and
verify that you can receive live video.

You can also verify your hardware by running the Microsoft image capture
application, AMCap.exe, which is included with the toolbox distribution. Go
to the $MATLAB/toolbox/imaq/imaq directory, where $MATLAB is your
top-level installation directory, and double-click on AMCAP.exe. If you can
start the utility, run the utility, and close the utility without encountering
any errors, the toolbox should be able to operate with your image acquisition
0

Troubleshooting
device. If you encounter errors, resolve them before attempting to use the
toolbox with the device.

2 If your hardware is functioning properly, verify that you are using hardware
device drivers that are compatible with the toolbox.

Note For Windows image acquisition devices, you must also have the correct
version of Microsoft DirectX installed on your computer.

The Image Acquisition Toolbox is only compatible with WDM (Windows Driver
Model) or VFW (Video for Windows) drivers. Contact the hardware
manufacturer to determine if the driver provided with your hardware conforms
to these driver classes. Determine which driver version you are using on your
system and verify that the version is compatible with the Image Acquisition
Toolbox by checking the list of supported drivers on the Image Acquisition
Toolbox product page at The MathWorks Web site
(www.mathworks.com/products/imaq). If you discover that you are using an
unsupported driver, visit the hardware manufacturer's Web site for the latest
drivers.

The Image Acquisition Toolbox is only compatible with specific versions of the
Microsoft DirectX multimedia technology and is not guaranteed to work with
any other versions. Find out which driver version you are using on your system.
(See “Determining the Microsoft DirectX Version” to learn how.) For a list of
the versions compatible with the Image Acquisition Toolbox, refer to the
product page at The MathWorks Web site
(www.mathworks.com/products/imaq). Visit the Microsoft DirectX Web site
(www.microsoft.com/directx/) for the latest version of DirectX.

Determining the Microsoft DirectX Version
To determine which version of Microsoft DirectX you are using, run the DirectX
Diagnostic Tool. You can access this software through the Windows Start
button.

Select Start->Run.

In the Run dialog box, launch the DirectX Diagnostic Tool by opening the
dxdiag program.
2-11

2 Introduction

2-1
In the DirectX Diagnostic Tool, the Microsoft DirectX version is listed on the
System tab under the System Information section.

DirectX Diagnostic Tool

DirectX
version
2

Troubleshooting
Troubleshooting a Preview Window
When previewing the video stream, if you encounter a problem, try one of the
following solutions.

Problem Possible Solutions

Preview window
stops running.

When this occurs, try any of the following
solutions:

• Close the preview window and reopen it.

• Verify that your image acquisition device is
working properly. Close MATLAB and run the
application that came with your device.

• Make sure no other application is using the
device.

Preview displays
blank, gray window.

When this occurs, try any of the following
solutions:

• Close the preview window and reopen it.

• Check memory usage. It is possible that there is
not enough memory available for the incoming
image data. To increase the memory allocation,
use the imaqmem function and specify a higher
value for the FrameMemoryLimit.

• Make sure no other application is using the
device.

Preview window
displays dropped
frames message.

When this occurs, try any of the following
solutions:

• Close the preview window and reopen it.

• Check memory usage. It is possible that there is
not enough memory available for the incoming
image data. To increase the memory allocation,
use the imaqmem function and specify a higher
value for the FrameMemoryLimit.
2-13

2 Introduction

2-1
4

3

Connecting to Hardware

To connect to an image acquisition device from within MATLAB, you must create a video input
object. This object represents the connection between MATLAB and the device. You can use object
properties to control various aspects of the acquisition. Before you can create the object, you need
several pieces of information about the device that you want to connect to.

This chapter describes tasks related to establishing a connection between MATLAB and an image
acquisition device.

Getting Hardware Information (p. 3-2) Describes how to get the information the toolbox needs to
connect to a specific image acquisition device

Creating Image Acquisition Objects
(p. 3-9)

Describes how to create the objects that the Image
Acquisition Toolbox uses to establish the connection
between MATLAB and an image acquisition device

Configuring Image Acquisition Object
Properties (p. 3-17)

Describes how to modify characteristics of the acquisition
using properties of the image acquisition objects

Starting and Stopping a Video Input
Object (p. 3-24)

Describes how to start and stop a video input object

Deleting Image Acquisition Objects
(p. 3-27)

Describes how to delete the image acquisition objects you
create

Saving and Loading Image Acquisition
Objects (p. 3-29)

Describes how to save an image acquisition object so that
it can be loaded into the MATLAB workspace at a later
time

3 Connecting to Hardware

3-2
Getting Hardware Information
To access an image acquisition device, the toolbox needs several pieces of
information:

• The name of the adaptor the toolbox uses to connect to the image acquisition
device

• The device ID of the device you want to access (optional)

• The video format of the video stream (optional)

You use the imaqhwinfo function to retrieve this information, as described in
the following sections:

• “Determining the Device Adaptor Name” on page 3-2

• “Determining the Device ID” on page 3-4

• “Determining Supported Video Formats” on page 3-6

Note When using imaqhwinfo to get information about a device, especially
devices that use a Video for Windows (VFW) driver, you might encounter
dialog boxes reporting an assertion error. Make sure that the software drivers
are installed correctly and that the acquisition device is connected to the
computer.

Determining the Device Adaptor Name
An adaptor is the software the toolbox uses to communicate with an image
acquisition device via its device driver. The toolbox includes adaptors for some
vendors of image acquisition equipment and for particular classes of image
acquisition devices. The following table lists the adaptors included with the
Image Acquisition Toolbox. For more information, see “System Requirements”
on page 2-3.

Getting Hardware Information
To determine which adaptors are available on your system, call the imaqhwinfo
function. The imaqhwinfo function returns information about the toolbox
software and lists the adaptors available on the system in the
InstalledAdaptors field. In this example, there are two adaptors available on
the system.

imaqhwinfo
ans =

InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '6.5.1 (R13+)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.0 (R13+)'

Note While every adaptor supported by the Image Acquisition Toolbox is
installed with the toolbox, imaqhwinfo only lists adaptors in the
InstalledAdaptors field that are loadable. That is, the device drivers
required by the vendor are installed on the system. Note, however, that
inclusion in the InstalledAdaptors field does not necessarily mean that an
adaptor is connected to a device.

Adaptors Included with the Image Acquisition Toolbox

Adaptor Name Description

'dt' Adaptor for image acquisition devices produced by Data
Translation, Inc.

'matrox' Adaptor for image acquisition devices produced by
Matrox Electronic Systems, Ltd.

'winvideo' Adaptor for devices that provide a WDM (Windows
Driver Model) or VFW (Video for Windows) driver
including USB and FireWire (IEEE-1394) cameras
3-3

3 Connecting to Hardware

3-4
Determining the Device ID
The adaptor assigns a unique number to each device with which it can
communicate. The adaptor assigns the first device it detects the device ID 1,
the second it detects the device ID 2, and so on.

To find the device ID of a particular image acquisition device, call the
imaqhwinfo function, specifying the name of the adaptor as the only argument.
When called with this syntax, imaqhwinfo returns a structure containing
information about all the devices available through the specified adaptor.

In this example, the imaqhwinfo function returns information about all the
devices available through the Matrox adaptor.

info = imaqhwinfo('matrox');

info =

AdaptorDllName: [1x74 char]
 AdaptorDllVersion: '6.5 (R13+)'
 AdaptorName: 'matrox'
 DeviceIDs: {[1]}

DeviceInfo: [1x1 struct]

The fields in the structure returned by imaqhwinfo provide the following
information.

Device Information Returned by imaqhwinfo

Field Description

AdaptorDllName Text string that identifies the name of the adaptor
dynamic link library (DLL)

AdaptorDllVersion Information about the version of the adaptor DLL

AdaptorName Name of the adaptor

DeviceIDs Cell array containing the device IDs of all the
devices accessible through this adaptor

DeviceInfo Array of device information structures. See
“Getting More Information About a Particular
Device” on page 3-5 for more information.

Getting Hardware Information
Getting More Information About a Particular Device
If an adaptor provides access to multiple devices, you might need to find out
more information about the devices before you can select a device ID. The
DeviceInfo field is an array of device information structures. Each device
information structure contains detailed information about a particular device
available through the adaptor.

To view the information for a particular device, call imaqhwinfo again, this
time specifying a device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
 DeviceFileSupported: 1
 DeviceName: 'Orion'
 DeviceID: 1
 ObjectConstructor: 'videoinput('matrox', 1)'
 SupportedFormats: {1x10 cell}

The fields in the device information structure provide the following
information about a device.

Device Information Structure Returned by imaqhwinfo

Field Description

DefaultFormat Text string that identifies the video format
used by the device if none is specified at object
creation time

DeviceFileSupported If set to 1, the device supports device
configuration files; otherwise 0. See “Using
Device Configuration Files (Camera Files)” on
page 3-14 for more information.

DeviceName Descriptive text string, assigned by the
adaptor, that identifies the device

DeviceID ID assigned to the device by the adaptor
3-5

3 Connecting to Hardware

3-6
Determining Supported Video Formats
The video format specifies the characteristics of the images in the video stream,
such as the image resolution (width and height), the industry standard used,
and the size of the data type used to store pixel information.

Image acquisition devices typically support multiple video formats. You can
specify the video format when you create the video input object to represent the
connection to the device. See “Creating Image Acquisition Objects” on page 3-9
for more information.

Note Specifying the video format is optional; the toolbox uses one of the
supported formats as the default.

To determine which video formats an image acquisition device supports, look
in the SupportedFormats field of the DeviceInfo structure returned by the
imaqhwinfo function. To view the information for a particular device, call
imaqhwinfo, specifying the device ID as an argument.

dev_info = imaqhwinfo('matrox',1)

dev_info =

DefaultFormat: 'M_RS170'
 DeviceFileSupported: 1
 DeviceName: 'Orion'

ObjectConstructor Default syntax you can use to create a video
input object to represent this device. See
“Creating Image Acquisition Objects” on
page 3-9 for more information.

SupportedFormats Cell array of strings that identify the video
formats supported by the device. See
“Determining Supported Video Formats” on
page 3-6 for more information.

Device Information Structure Returned by imaqhwinfo

Field Description

Getting Hardware Information
 DeviceID: 1
 ObjectConstructor: 'videoinput('matrox', 1)'
 SupportedFormats: {1x10 cell}

The DefaultFormat field lists the default format selected by the toolbox. The
SupportedFormats field is a cell array containing text strings that identify all
the supported video formats. The toolbox assigns names to the formats based
on vendor-specific terminology. If you want to specify a video format when you
create an image acquisition object, you must use one of the text strings in this
cell array. See “Creating Image Acquisition Objects” on page 3-9 for more
information.

celldisp(dev_info.SupportedFormats)

ans{1} =

M_RS170

ans{2} =

M_RS170_VIA_RGB

ans{3} =

M_CCIR

ans{4} =

M_CCIR_VIA_RGB

ans{5} =

M_NTSC

ans{6} =

M_NTSC_RGB

ans{7} =

M_NTSC_YC
3-7

3 Connecting to Hardware

3-8
ans{8} =

M_PAL

ans{9} =

M_PAL_RGB

ans{10} =

M_PAL_YC

Creating Image Acquisition Objects
Creating Image Acquisition Objects
After you get information about your image acquisition hardware, described in
“Getting Hardware Information” on page 3-2, you can establish a connection to
the device by creating an image acquisition object. The toolbox uses two types
of image acquisition objects:

• Video input object

• Video source object

Video Input Objects
A video input object represents the connection between MATLAB and a video
acquisition device at a high level. You must create the video input object using
the videoinput function. See “Creating a Video Input Object” on page 3-10 for
more information.

Video Source Objects
When you create a video input object, the toolbox automatically creates one or
more video source objects associated with the video input object. Each video
source object represents a collection of one or more physical data sources that
are treated as a single entity. The number of video source objects the toolbox
creates depends on the device and the video format you specify.

At any one time, only one of the video source objects, called the selected source,
can be active. This is the source used for acquisition. The toolbox selects one of
the video source objects by default, but you can change this selection. See
“Specifying the Selected Video Source Object” on page 3-15 for more
information. The following figure illustrates how a video input object acts as a
container for one or more video source objects.
3-9

3 Connecting to Hardware

3-1
.

Relationship of Video Input Objects and Video Source Objects

For example, a Matrox frame grabber device can support eight physical
connections, which Matrox calls channels. These channels can be configured in
various ways, depending upon the video format. If you specify a monochrome
video format, such as RS170, the toolbox creates eight video source objects, one
object for each of the eight channels on the device. If you specify a color video
format, such as NTSC RGB, the Matrox device uses three physical channels to
represent one RGB connection, where each physical connection provides the
red data, green data, and blue data separately. With this format, the toolbox
only creates two video source objects for the same device.

Creating a Video Input Object
To create a video input object, call the videoinput function specifying the
adaptor name, device ID, and video format. You retrieved this information
using the imaqhwinfo function (described in “Getting Hardware Information”
on page 3-2). The only required argument is the adaptor name. The toolbox can
use default values for the device ID and video format.

This example creates a video input object to represent the connection to a
Matrox image acquisition device. The imaqhwinfo function includes the default
videoinput syntax in the ObjectConstructor field of the device information
structure.

vid = videoinput('matrox');

This syntax uses the default video format listed in the DefaultFormat field of
the data returned by imaqhwinfo. You can optionally specify the video format.
See “Specifying the Video Format” on page 3-12 for more information.

...Video
source
object

Video input object

Video
source
object

Video
source
object

Currently selected
source
0

Creating Image Acquisition Objects
Viewing a Summary of a Video Input Object
To view a summary of the characteristics of the video input object you created,
enter the variable name you assigned to the object at the command prompt. For
example, this is the summary for the object vid.

vid

The items in this list correspond to the numbered elements in the object
summary:

1 The title of the summary includes the name of the image acquisition device
this object represents. In the example, this is a Matrox Orion frame grabber.

2 The Acquisition Source section lists the name of all the video source objects
associated with this video input object. For many objects, this list might only
contain one video source object. In the example, the Matrox device supports
eight physical input channels and, with the default video format, the toolbox
creates a video source object for each connection. For an example showing
the video source objects created with another video format, see “Specifying
the Video Format” on page 3-12.

3 The Acquisition Parameters section lists the values of key video input object
properties. These properties control various aspects of the acquisition, such
as the number of frames to acquire and the location where acquired frames
are stored. For information about these properties, see Chapter 4,
“Acquiring Image Data.”

Summary of Video Input Object Using 'Orion'.

 Acquisition Source(s): CH0, CH1, CH2, CH3, CH4, CH5, CH6, and
 CH7 are available.

 Acquisition Parameters: 'CH0' is the current selected source.
10 frames per trigger using the selected source.
'M_RS170' video data to be logged upon START.

 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.

4

1

2

3

5

3-11

3 Connecting to Hardware

3-1
4 The Trigger Parameters section lists the trigger type configured for the
object and the number of times the trigger is to be executed. Trigger
execution initiates data logging, and the toolbox supports several types of
triggers. The example object is configured by default with an immediate
trigger. For more information about configuring triggers, see Chapter 4,
“Acquiring Image Data.”

5 The Status section lists the current state of the object. A video input object
can be in one of several states:

- Running or not running (stopped)

- Logging or not logging

- Previewing or not previewing

In the example, the object describes its state as Waiting for START. This
indicates it is not running. For more information about the running state,
see “Starting and Stopping a Video Input Object” on page 3-24. This section
also reports how many frames of data have been acquired and how many
frames are available in the buffer where the toolbox stores acquired frames.
For more information about these parameters, see “Controlling Logging
Parameters” on page 4-16.

Specifying the Video Format
You can optionally specify the format of the video stream when you create a
video input object as a third argument to the videoinput function. This
argument can take two forms:

• A text string specifying a video format

• A name of a device configuration file, also known as a camera file

The following sections describe these options. If you do not specify a video
format, the videoinput function uses one of the video formats supported by the
device. For Matrox and Data Translation devices, it chooses the RS170 video
format. For Windows devices, it uses the first RGB format in the list of
supported formats or, if no RGB formats are supported, the device’s default
format.
2

Creating Image Acquisition Objects
Using a Video Format String
To specify a video format as a text string, use the imaqhwinfo function to
determine the list of supported formats. The imaqhwinfo function returns this
information in the SupportedFormats field of the device information structure.
See “Determining Supported Video Formats” on page 3-6 for more information.

In this example, each of the text strings is a video format supported by a
Matrox device.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

 'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

 Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

For Matrox devices, the toolbox uses the RS170 format as the default. (To find
out which is the default video format, look in the DefaultFormat field of the
device information structure returned by the imaqhwinfo function.)

Note For Matrox devices, the M_NTSC_RGB format string represents a
component video format.

This example creates a video input object, specifying a color video format.

vid2 = videoinput('matrox', 1,'M_NTSC_RGB');
3-13

3 Connecting to Hardware

3-1
Using Device Configuration Files (Camera Files)
For some devices, you can use a device configuration file, also known as a
camera file, to specify the video format as well as other configuration settings.
Image acquisition device vendors supply these device configuration files.

Note The toolbox ignores hardware trigger configurations included in a
device configuration file. To configure a hardware trigger, you must use the
toolbox triggerconfig function. See “Example: Using a Hardware Trigger” on
page 4-12 for more information.

For example, with Matrox frame grabbers, you can download digitizer
configuration format (DCF) files, in their terminology. These files configure
their devices to support particular cameras.

Some image acquisition device vendors provide utility programs you can use to
create a device configuration file or edit an existing one. See your hardware
vendor’s documentation for more information.

To determine if your image acquisition device supports device configuration
files, check the value of the DeviceFileSupported field of the device
information structure returned by imaqhwinfo. See “Getting More Information
About a Particular Device” on page 3-5 for more information.

This example creates a video input object specifying a Matrox device
configuration file as an argument.
4

Creating Image Acquisition Objects
When you use a device configuration file, the value of the VideoFormat
property of the video input object is the full path of the file, not a video format
string.

Specifying the Selected Video Source Object
When you create a video input object, the toolbox creates one or more video
source objects associated with the video input object. The number of video
source objects created depends on the device and the video format. The Source
property of the video input object lists these video source objects.

To illustrate, this example lists the video source objects associated with the
video input object vid.

get(vid,'Source')

Display Summary for Video Source Object Array:

 Index: SourceName: Selected:
 1 'CH0' 'on'
 2 'CH1' 'off'
 3 'CH2' 'off'
 4 'CH3' 'off'

vid = videoinput('matrox',1,'pulnix.dcf')

Summary of Video Input Object Using 'Orion'.

Acquisition Source(s): CH0 and CH1 are available.

Acquisition Parameters: 'CH0' is the current selected source.
10 frames per trigger using the selected source.
'C:\pulnix.dcf' video data to be logged upon START.
Grabbing first of every 1 frame(s).
Log data to 'memory' on trigger.

Trigger Parameters: 1 'immediate' trigger(s) on START.

Status: Waiting for START.
0 frames acquired since starting.
0 frames available for GETDATA.
3-15

3 Connecting to Hardware

3-1
 5 'CH4' 'off'
 6 'CH5' 'off'
 7 'CH6' 'off'
 8 'CH7' 'off'

By default, the video input object makes the first video source object in the
array the selected source. To use another video source, change the value of the
SelectedSourceName property.

This example changes the currently selected video source object from CH0 to CH1
by setting the value of the SelectedSourceName property.

vid.SelectedSourceName = 'CH1';

Note The getselectedsource function returns the video source object that is
currently selected at the time the function is called. If you change the value of
the SelectedSourceName property, you must call the getselectedsource
function again to retrieve the new selected video source object.
6

Configuring Image Acquisition Object Properties
Configuring Image Acquisition Object Properties
The video input object and the video source object both support properties that
enable you to control characteristics of the video image and how it is acquired.

The video input object properties control aspects of an acquisition that are
common to all image acquisition devices. For example, you can use the
FramesPerTrigger property to specify the amount of data you want to acquire.

The video source object properties control aspects of the acquisition associated
with a particular source. The set of properties supported by a video source
object varies with each device. For example, some image acquisition devices
support properties that enable you to control the quality of the image being
produced, such as Brightness, Hue, and Saturation.

With either type of object, you can use the same toolbox functions to

• View a list of all the properties supported by the object, with their current
values

• View the value of a particular property

• Get information about a property

• Set the value of a property

Note Three video input object trigger properties require the use of a special
configuration function. For more information, see “Setting Trigger Properties”
on page 3-23.

Viewing the Values of Object Properties
To view all the properties of an image acquisition object, with their current
values, use the get function. You can also use the inspect function to view a
list of object properties in the Property Inspector window, where you can also
edit their values.

This example uses the get function to display a list of all the properties of the
video input object vid. “Viewing the Properties of a Video Source Object” on
page 3-19 describes how to do this for video source objects.
3-17

3 Connecting to Hardware

3-1
If you do not specify a return value, the get function displays the object
properties in four categories: General Settings, Callback Function Settings,
Trigger Settings, and Acquisition Sources.

get(vid)
General Settings:

 DeviceID = 1
 DiskLogger = []
 DiskLoggerFrameCount = 0
 EventLog = [1x0 struct]
 FrameGrabInterval = 1
 FramesAcquired = 0
 FramesAvailable = 0
 FramesPerTrigger = 10
 Logging = off
 LoggingMode = memory
 Name = M_RS170-matrox-1
 NumberOfBands = 1
 Previewing = off
 ReturnedColorSpace = grayscale
 ROIPosition = [0 0 640 480]
 Running = off
 Tag =
 Timeout = 10
 Type = videoinput
 UserData = []
 VideoFormat = M_RS170
 VideoResolution = [640 480]

 Callback Function Settings:
 ErrorFcn = @imaqcallback
 FramesAcquiredFcn = []
 FramesAcquiredFcnCount = 0
 StartFcn = []
 StopFcn = []
 TimerFcn = []
 TimerPeriod = 1
 TriggerFcn = []
8

Configuring Image Acquisition Object Properties
 Trigger Settings:
 InitialTriggerTime = [0 0 0 0 0 0]
 TriggerCondition = none
 TriggerFrameDelay = 0
 TriggerRepeat = 0
 TriggersExecuted = 0
 TriggerSource = none
 TriggerType = immediate

 Acquisition Sources:
 SelectedSourceName = CH0
 Source = [1x8 videosource]

Viewing the Properties of a Video Source Object
To view the properties supported by the video source object (or objects)
associated with a video input object, use the getselectedsource function to
retrieve the currently selected video source object. This example lists the
properties supported by the video source object associated with the video input
object vid. Note the device-specific properties that are included.

Note The video source object for your device might not include device-specific
properties. For example, devices accessed with the 'winvideo' adaptor, such
as Webcams, that use a Video for Windows (VFW) driver, may not provide a
way for the toolbox to programmatically query for device properties. Use the
configuration tools provided by the manufacturer to configure these devices.

get(getselectedsource(vid))
 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = CH0
 Tag =
 Type = videosource

 Device Specific Properties:
 InputFilter = lowpass
 UserOutputBit3 = off
 UserOutputBit4 = off
3-19

3 Connecting to Hardware

3-2
 XScaleFactor = 1
 YScaleFactor = 1

Viewing the Value of a Particular Property
To view the value of a particular property of an image acquisition object, use
the get function, specifying the name of the property as an argument. You can
also access the value of the property as you would a field in a MATLAB
structure.

This example uses the get function to retrieve the value of the Previewing
property.

get(vid,'Previewing')

ans =

off

This example illustrates how to access the same property by referencing the
object as if it were a MATLAB structure.

vid.Previewing

ans =

off

Getting Information About Object Properties
To get information about a particular property, you can view the reference page
for the property in the “Property Reference” section of this documentation. You
can also get information about a particular property at the command line by
using the propinfo or imaqhelp functions.

The propinfo function returns a structure that contains information about the
property such as its data type, default value, and a list of all possible values, if
the property supports such a list. This example uses propinfo to get
information about the LoggingMode property.
0

Configuring Image Acquisition Object Properties
propinfo(vid,'LoggingMode')

ans =

 Type: 'string'
 Constraint: 'enum'
 ConstraintValue: {'memory' 'disk' 'disk&memory'}
 DefaultValue: 'memory'
 ReadOnly: 'whileRunning'
 DeviceSpecific: 0

The imaqhelp function returns reference information about the property with
a complete description. This example uses imaqhelp to get information about
the LoggingMode property.

imaqhelp(vid,'LoggingMode')

Setting the Value of an Object Property
To set the value of a particular property of an image acquisition object, use the
set function, specifying the name of the property as an argument. You can also
assign the value to the property as you would a field in a MATLAB structure.

Note Because some properties are read only, only a subset of all video input
and video source properties can be set.

This example uses the set function to set the value of the LoggingMode
property.

set(vid,'LoggingMode','disk&memory')

To verify the new value of the property, use the get function.

get(vid,'LoggingMode')

ans =

disk&memory
3-21

3 Connecting to Hardware

3-2
This example sets the value of a property by assigning the value to the object
as if it were a MATLAB structure.

vid.LoggingMode = 'disk';

vid.LoggingMode

ans =

disk

Viewing a List of All Settable Object Properties
To view a list of all the properties of a video input object or video source object
that can be set, use the set function.

set(vid)

General Settings:
 DiskLogger
 FrameGrabInterval
 FramesPerTrigger
 LoggingMode: [{memory} | disk | disk&memory]
 Name
 ROIPosition
 Tag
 Timeout
 UserData

 Callback Function Settings:
 ErrorFcn: string -or- function handle -or- cell array
 FramesAcquiredFcn: string -or- function handle -or- cell array
 FramesAcquiredFcnCount
 StartFcn: string -or- function handle -or- cell array
 StopFcn: string -or- function handle -or- cell array
 TimerFcn: string -or- function handle -or- cell array
 TimerPeriod
 TriggerFcn: string -or- function handle -or- cell array

 Trigger Settings:
 TriggerFrameDelay
 TriggerRepeat

 Acquisition Sources:
 SelectedSourceName: [{CH0} | CH1 | CH2 | CH3 | CH4]
2

Configuring Image Acquisition Object Properties
Setting Trigger Properties
The values of certain trigger properties, TriggerType, TriggerCondition, and
TriggerSource, are interrelated. For example, some TriggerCondition values
are only valid with specific values of the TriggerType property.

To ensure that you specify only valid combinations for the values of these
properties, you must use two functions:

• The triggerinfo function returns all the valid combinations of values for
the specified video input object.

• The triggerconfig function sets the values of these properties.

For more information, see “Specifying Trigger Type, Source, and Condition” on
page 4-5.
3-23

3 Connecting to Hardware

3-2
Starting and Stopping a Video Input Object
When you create a video input object, you establish a connection between
MATLAB and an image acquisition device. However, before you can acquire
data from the device, you must start the object, using the start function.

start(vid);

When you start an object, you reserve the device for your exclusive use and lock
the configuration. Thus, certain properties become read only while running.

An image acquisition object stops running when any of the following conditions
is met:

• The requested number of frames is acquired. This occurs when
FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object. For information about these properties,
see Chapter 4, “Acquiring Image Data.”

• A run-time error occurs.

• The object's Timeout value is reached.

• You issue the stop function.

When an object is started, the toolbox sets the object’s Running property to
'on'. When an object is not running, the toolbox sets the object’s Running
property to 'off'; this state is called stopped. The following figure illustrates
how an object moves from a running to a stopped state.
.

Transitions from Running to Stopped States

Video stream . . .F4F3F2F1 F5

Object started;
video stream
begins.

F10F9F8F7F6

Acquisition
stops.

Object is
created.

Running='off' Running='on' Running='off'

Acquisition is
triggered.
4

Starting and Stopping a Video Input Object
The following example illustrates starting and stopping an object:

1 Create an image acquisition object — This example creates a video input
object for a Webcam image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

2 Configure properties — To illustrate object states, set the video input
object’s TriggerType property to 'Manual'. To set the value of certain
trigger properties, including the TriggerType property, you must use the
triggerconfig function. See “Setting the Values of Trigger Properties” on
page 4-5 for more information.

triggerconfig(vid, 'Manual')

Verify that the image is in a stopped state.

vid.Running
ans =
off

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid);

The video object is now running but not logging. With manual triggers, the
video stream begins when the object starts but no frames are acquired until
the trigger executes.

vid.Running
ans =
on

4 Execute the manual trigger — Call the trigger function to execute the
manual trigger.

trigger(vid)

After it acquires the specified number of frames, the video input object stops
running.
3-25

3 Connecting to Hardware

3-2
vid.Running
ans =
off

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
6

Deleting Image Acquisition Objects
Deleting Image Acquisition Objects
When you finish using your image acquisition objects, use the delete function
to remove them from memory. After deleting them, clear the variables that
reference the objects from the MATLAB workspace by using the clear
function.

Note When you delete a video input object, all the video source objects
associated with the video input object are also deleted.

To illustrate, this example creates several video input objects and then deletes
them.

1 Create several image acquisition objects — This example creates several
video input objects for a single Webcam image acquisition device, specifying
several different video formats. To run this example on your system, use the
imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);
vid2 = videoinput('winvideo',1,'RGB24_176x144');
vid3 = videoinput('winvideo',1,'YV12_352x288');

2 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

You can delete image acquisition objects one at a time, using the delete
function.

delete(vid)

You can also delete all the video input objects that currently exist in memory
in one call to delete by using the imaqfind function. The imaqfind function
returns an array of all the video input objects in memory.

imaqfind

 Video Input Object Array:

 Index: Type: Name:
3-27

3 Connecting to Hardware

3-2
 1 videoinput RGB555_128x96-winvideo-1
 2 videoinput RGB24_176x144-winvideo-1
 3 videoinput YV12_352x288-winvideo-1

Nest a call to the imaqfind function within the delete function to delete all
these objects from memory.

delete(imaqfind)

Note that the variables associated with the objects remain in the workspace.

whos
Name Size Bytes Class

vid 1x1 1120 videoinput object
 vid2 1x1 1120 videoinput object
 vid3 1x1 1120 videoinput object
vids 1x3 1280 videoinput object

These variables are not valid image acquisition objects.

isvalid(vid)

ans =
0

To remove these variables from the workspace, use the clear command.
8

Saving and Loading Image Acquisition Objects
Saving and Loading Image Acquisition Objects
You can save a video input object to a MAT-file just as you would any
workspace variable by using the save command. This example saves the video
input object vid to the MAT-file myvid.mat.

save myvid vid

When you save a video input object, all the video source objects associated with
the video input object are also saved.

To load an image acquisition object that was saved to a MAT-file into the
MATLAB workspace, use the load command. For example, to load vid from
MAT-file myvid.mat, use

load myvid

Note The values of read-only properties are not saved. When you load an
image acquisition object into the MATLAB workspace, read-only properties
revert back to their default values. To determine if a property is read only, use
the propinfo function or read the property reference page.
3-29

3 Connecting to Hardware

3-3
0

4

Acquiring Image Data

The core of any image acquisition application is the data acquired from the input device. A trigger is
the event that initiates the acquisition of image frames, a process called logging. A trigger event
occurs when a certain condition is met. For some types of triggers, the condition can be the execution
of a toolbox function. For other types of triggers, the condition can be a signal from an external source
that is monitored by the image acquisition hardware.

This chapter describes how to configure and use the various triggering options supported by the
Image Acquisition Toolbox and control other acquisition parameters.

Overview (p. 4-2) Provides an overview of data logging and provides a brief description of
all the trigger properties supported by the video input object

Setting the Values of Trigger
Properties (p. 4-5)

Describes how to set the values of video input object trigger properties

Specifying the Trigger Type
(p. 4-7)

Describes how to specify the value of the TriggerType property

Controlling Logging
Parameters (p. 4-16)

Describes how you can control various aspects of data logging using
toolbox functions and video input object properties

Waiting for an Acquisition to
Finish (p. 4-26)

Describes how to use the wait function to block the command line until
an acquisition completes

Managing Memory Usage
(p. 4-28)

Describes how to use the imaqmem function to monitor toolbox memory
usage

Logging Image Data to Disk
(p. 4-32)

Describes how to configure a video input object to log image data to a
disk file

4 Acquiring Image Data

4-2
Overview
When a trigger occurs, the toolbox sets the object’s Logging property to 'on'
and starts storing the acquired frames in a buffer in memory, a disk file, or
both. When the acquisition stops, the toolbox sets the object’s Logging property
to 'off'. The following figure illustrates when an object moves into a logging
state and the relation between running and logging states.
.

Logging State Transitions

Note After Logging is set to 'off', it is possible that the object might still be
logging data to disk. To determine when disk logging is complete, check the
value of the DiskLoggerFrameCount property. For more information, see
“Logging Image Data to Disk” on page 4-32.

The following figure illustrates a group of frames being acquired from the video
stream, logged to memory and disk, and brought into the MATLAB workspace
as a multidimensional numeric array. Note that when frames are brought into
the MATLAB workspace, they are removed from the memory buffer.

Video stream . . .F4F3F2F1 F5

Object is
started; video
stream begins.

F10F9F8F7F6

Acquisition
stops.

Object is
created.

Running='off' Running='on' Running='off'

Acquisition is
triggered.

Logging='on'Logging='off' Logging='off'

No frames

Overview
.

Overview of Data Logging

Trigger Properties
The video input object supports several properties that you can use to configure
aspects of trigger execution. Some of these properties return information about
triggers. For example, to find out when the first trigger occurred, look at the
value of the InitialTriggerTime property. Other properties enable you to
control trigger behavior. For example, you use the TriggerRepeat property to
specify how many additional times an object should execute a trigger.

Start object;
video stream
begins.

F10F9F8F7F6 F10F9F8F7F6

Trigger occurs;
data logging
begins.

Memory buffer

Disk file

Toolbox logs image
frames to memory
and/or disk file.

Video stream . . .F4F3F2F1 F5 F14F13F12F11F10F9F8F7F6

Acquisition
stops.

F15
4-3

4 Acquiring Image Data

4-4
The following table provides a brief description of all the trigger-related
properties supported by the video input object. For information about how to
set these properties, see “Setting the Values of Trigger Properties” on page 4-5.

Trigger Properties of the Video Input Object

Property Description

InitialTriggerTime Reports the absolute time when the first trigger
executed

TriggerCondition Specifies the condition that must be met for a
trigger to be executed. This property is always set
to 'none' for immediate and manual triggers.

TriggerFcn Specifies the callback function to execute when a
trigger occurs. For more information about
callbacks, see Chapter 6, “Using Events and
Callbacks.”

TriggerFrameDelay Specifies the number of frames to skip before
logging data to memory, disk, or both. For more
information, see “Delaying Data Logging After a
Trigger” on page 4-24.

TriggerRepeat Specifies the number of additional times to
execute a trigger. If the value of TriggerRepeat is
0 (zero), the trigger executes but is not repeated
any additional times. For more information, see
“Specifying Multiple Triggers” on page 4-25.

TriggersExecuted Reports the number of triggers that have been
executed

TriggerSource Specifies the source to monitor for a trigger
condition to be met. This property is always set to
'none' for immediate and manual triggers.

TriggerType Specifies the type of trigger: 'immediate',
'manual', or 'hardware'. Use the triggerinfo
function to determine whether your image
acquisition device supports hardware triggers.

Setting the Values of Trigger Properties
Setting the Values of Trigger Properties
Most trigger properties can be set using the same methods you use to set any
other image acquisition object property: using the set function or referencing
the property as you would a field in a structure. For example, you can use the
set function to specify the value of the TriggerRepeat property, where vid is
a video input object created using the videoinput function.

set(vid,'TriggerRepeat',Inf)

For more information, see “Configuring Image Acquisition Object Properties”
on page 3-17.

Some trigger properties, however, are interrelated and require the use of the
triggerconfig function to set their values. These properties are the
TriggerType, TriggerCondition, and TriggerSource properties. For example,
some TriggerCondition values are only valid when the value of the
TriggerType property is 'hardware'.

Specifying Trigger Type, Source, and Condition
Setting the values of the TriggerType, TriggerSource, and TriggerCondition
properties can be a two-step process:

1 Determine valid configurations of these properties by calling the
triggerinfo function.

2 Set the values of these properties by calling the triggerconfig function.

For an example of using these functions, see “Example: Using a Hardware
Trigger” on page 4-12.

Determining Valid Configurations
To find all the valid configurations of the TriggerType, TriggerSource, and
TriggerCondition properties, use the triggerinfo function, specifying a
video input object as an argument.

config = triggerinfo(vid);

This function returns an array of structures, one structure for each valid
combination of property values. Each structure in the array is made up of three
4-5

4 Acquiring Image Data

4-6
fields that contain the values of each of these trigger properties. For example,
the structure returned for an immediate trigger always has these values:

TriggerType: 'immediate'
 TriggerCondition: 'none'
 TriggerSource: 'none'

A device that supports hardware configurations might return the following
structure.

TriggerType: 'hardware'
 TriggerCondition: 'risingEdge'
 TriggerSource: 'TTL'

Note The text strings used as the values of the TriggerCondition and
TriggerSource properties are device specific. Your device, if it supports
hardware triggers, might support different condition and source values.

Configuring Trigger Type, Source, and Condition Properties
To set the values of the TriggerType, TriggerSource, and TriggerCondition
properties, you must use the triggerconfig function. You specify the value of
the property as an argument to the function.

For example, this code sets the values of these properties for a hardware
trigger.

triggerconfig(vid,'hardware','risingEdge','TTL')

If you are specifying a manual trigger, you only need to specify the trigger type
value as an argument.

triggerconfig(vid,'manual')

You can also pass one of the structures returned by the triggerinfo function
to the triggerconfig function and set all three properties at once.

triggerconfig(config(1))

See the triggerconfig function documentation for more information.

Specifying the Trigger Type
Specifying the Trigger Type
To specify the type of trigger you want to execute, set the value of the
TriggerType property of the video input object. You must use the
triggerconfig function to set the value of this property. The following table
lists all the trigger types supported by the toolbox, with information about
when to use each type of trigger.

Comparison of Trigger Types

TriggerType
Value

TriggerSource and
TriggerCondition
Values

Description

'immediate' Always 'none' The trigger occurs automatically, immediately after the
start function is issued. This is the default trigger type.
For more information, see “Example: Using an Immediate
Trigger” on page 4-8.

'manual' Always 'none' The trigger occurs when you issue the trigger function.
A manual trigger can provide more control over image
acquisition. For example, you can monitor the video
stream being acquired, using the preview function, and
manually execute the trigger when you observe a
particular condition in the scene. For more information,
see “Example: Using a Manual Trigger” on page 4-10.

'hardware' Device-specific Hardware triggers are external signals that are processed
directly by the hardware. This type of trigger is used
when synchronization with another device is part of the
image acquisition setup or when speed is required. A
hardware device can process an input signal much faster
than software. For more information, see “Example:
Using a Hardware Trigger” on page 4-12.

Note: Only a subset of image acquisition devices supports
hardware triggers. To determine the trigger types
supported by your device, see “Determining Valid
Configurations” on page 4-5.
4-7

4 Acquiring Image Data

4-8
Example: Using an Immediate Trigger
To use an immediate trigger, simply create a video input object. Immediate
triggering is the default trigger type for all video input objects. With an
immediate trigger, the object executes the trigger immediately after you start
the object running with the start command. The following figure illustrates an
immediate trigger.
.

Immediate Trigger

The following example illustrates how to use an immediate trigger:

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

Video stream . . .F4F3F2F1 F5

Start occurs; video
stream begins;
immediate trigger
occurs.

F10F9F8F7F6

F4F3F2F1

Memory buffer

Toolbox logs
frames to
buffer.

Acquisition
stops.

FramesPerTrigger=5

F5

Specifying the Trigger Type
2 Configure properties — To use an immediate trigger, you do not have to
configure the TriggerType property because 'immediate' is the default
trigger type. You can verify this by using the triggerconfig function to
view the current trigger configuration or by viewing the video input object’s
properties.

triggerconfig(vid)
ans =

 TriggerType: 'immediate'
 TriggerCondition: 'none'
 TriggerSource: 'none'

This example sets the value of the FramesPerTrigger property to 5. (The
default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start the
image acquisition object. By default, the object executes an immediate
trigger and acquires five frames of data, logging the data to a memory buffer.
After logging the specified number of frames, the object stops running.

start(vid)

To verify that the object acquired data, view the value of the
FramesAcquired property. The object updates the value of this property as
it acquires data.

vid.FramesAcquired
ans =

5

To execute another immediate trigger, you must restart the object. Note,
however, that this deletes the data acquired by the first trigger. To execute
multiple immediate triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 4-25 for more
information.
4-9

4 Acquiring Image Data

4-1
4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Using a Manual Trigger
To use a manual trigger, create a video input object and set the value of the
TriggerType property to 'manual'. A video input object executes a manual
trigger after you issue the trigger function. The following figure illustrates a
manual trigger.
.

Manual Trigger

The following example illustrates how to use a manual trigger:

1 Create an image acquisition object — This example creates a video input
object for a Webcam image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

Verify that the object has not acquired any frames.

Video stream . . .F4F3F2F1 F5

Start occurs;
video stream
begins.

F14F13F12F11

F7F6F5F4

Manual
trigger
occurs.

Memory buffer

Toolbox logs
frames to
buffer.

F10F9F8F7F6

Acquisition
stops.

F8

FramesPerTrigger=5
0

Specifying the Trigger Type
get(vid,'FramesAcquired')
ans =

0

2 Configure properties — Set the video input object’s TriggerType property
to 'Manual'. To set the values of certain trigger properties, including the
TriggerType property, you must use the triggerconfig function. See
“Setting the Values of Trigger Properties” on page 4-5 for more information.

triggerconfig(vid, 'Manual')

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid);

The video object is now running but not logging. With manual triggers, the
video stream begins when the object starts but no frames are acquired until
the trigger executes.

vid.Running
ans =
on

vid.Logging
ans =
off

Verify that the object has still not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

4 Execute the manual trigger — Call the trigger function to execute the
manual trigger.
4-11

4 Acquiring Image Data

4-1
trigger(vid)

The object initiates the acquisition of five frames. Check the
FramesAcquired property again to verify that five frames have been
acquired.

get(vid,'FramesAcquired')
ans =

5

After it acquires the specified number of frames, the video input object stops
running. To execute another manual trigger, you must first restart the video
input object. Note that this deletes the frames acquired by the first trigger.
To execute multiple manual triggers, specify a value for the TriggerRepeat
property. See “Specifying Multiple Triggers” on page 4-25 for more
information.

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Example: Using a Hardware Trigger
To use a hardware trigger, create a video input object and set the value of the
TriggerType property to 'hardware'. You must also specify the source of the
hardware trigger and the condition type. The hardware monitors the source
you specify for the condition you specify. The following figure illustrates a
hardware trigger. For hardware triggers, the video stream does not start until
the trigger occurs.

Note Trigger sources and the conditions that control hardware triggers are
device specific. Use the triggerinfo function to determine whether your
image acquisition device supports hardware triggers and, if it does, which
conditions you can configure. Refer to the documentation that came with your
device for more detailed information about its hardware triggering
capabilities.
2

Specifying the Trigger Type
.

Hardware Trigger

The following example illustrates how to use a hardware trigger:

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.
The device must support hardware triggers.

vid = videoinput('matrox',1);

2 Determine valid trigger property configurations — Use the triggerinfo
function to determine if your image acquisition device supports hardware
triggers, and if it does, to find out valid configurations of the TriggerSource
and TriggerCondition properties. See “Determining Valid Configurations”
on page 4-5 for more information.

In this example, triggerinfo returns the following valid trigger
configurations.

Video stream . . .

Start object;
hardware
monitors trigger
source.

F9F8F7F6

F5F4F3F2F1

Trigger
condition met;
trigger occurs.

Memory buffer

Toolbox logs
frames to
buffer.

F5F4F3F2F1

FramesPerTrigger=5

Acquisition
stops.

No frames
4-13

4 Acquiring Image Data

4-1
triggerinfo(vid)
Valid Trigger Configurations:

 TriggerType: TriggerCondition: TriggerSource:
 'immediate' 'none' 'none'
 'manual' 'none' 'none'

'hardware' 'risingEdge' 'TTL'
'hardware' 'fallingEdge' 'TTL'

3 Configure properties — Configure the video input object trigger properties
to one of the valid combinations returned by triggerinfo. You can specify
each property value as an argument to the triggerconfig function

triggerconfig(vid, 'hardware','risingEdge','TTL')

Alternatively, you can set these values by passing one of the structures
returned by the triggerinfo function to the triggerconfig function.

configs = triggerinfo(vid);
triggerconfig(vid,configs(3));

This example also sets the value of the FramesPerTrigger property to 5.
(The default is 10 frames per trigger.)

set(vid,'FramesPerTrigger',5)

4 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object is running but not logging any data. The hardware begins
monitoring the trigger source for the specified condition. When the condition
is met, the hardware executes a trigger and begins providing image frames
to the object. The object acquires the number of frames specified by the
FramesPerTrigger property. View the value of the FramesAcquired property
to see how much data was acquired. The object updates the value of this
property as it acquires data.
4

Specifying the Trigger Type
vid.FramesAcquired
ans =

5

After it executes the trigger and acquires the specified number of frames, the
video input object stops running. To execute another hardware trigger, you
must first restart the video input object. Note that this deletes the frames
acquired by the first trigger. To execute multiple triggers, specify a value for
the TriggerRepeat property. See “Specifying Multiple Triggers” on
page 4-25 for more information.

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
4-15

4 Acquiring Image Data

4-1
Controlling Logging Parameters
This section describes how to control various aspects of data logging.

• Specifying the logging mode

• Specifying the number of frames to log

• Determining how many frames have been logged since the object was started

• Determining how many frames are currently available in the memory buffer

• Delaying data logging after a trigger executes

• Specifying multiple trigger executions

Specifying Logging Mode
Using the video input object LoggingMode property, you can control where the
toolbox logs acquired frames of data.

The default value for the LoggingMode property is 'memory'. In this mode, the
toolbox logs data to a buffer in memory. If you want to bring image data into
the MATLAB workspace, you must log frames to memory. The functions
provided by the toolbox to move data into the workspace all work with the
memory buffer. For more information, see “Bringing Image Data into the
MATLAB Workspace” on page 5-3.

You can also log data to a disk file by setting the LoggingMode property to
'disk' or to 'disk&memory'. By logging frames to a disk file, you create a
permanent record of the frames you acquire. For example, this code sets the
value of the LoggingMode property of the video input object vid to
'disk&memory'.

set(vid,'LoggingMode','disk&memory');

Because the toolbox stores the image frames in Audio-Video Interleaved (AVI)
format, you can view the logged frames in any standard media player. For more
information, see “Logging Image Data to Disk” on page 4-32.
6

Controlling Logging Parameters
Specifying the Number of Frames to Log
In the Image Acquisition Toolbox, you specify the amount of data you want to
acquire as the number of frames per trigger.

You specify the desired size of your acquisition as the value of the video input
object FramesPerTrigger property. By default, the value of this property is 10
frames per trigger, but you can specify any value. The following figure
illustrates an acquisition using the default value for the FramesPerTrigger
property. To see an example of an acquisition, see “Example: Acquiring 100
Frames” on page 4-19.
.

Specifying the Amount of Data to Log

Note While you can specify any size acquisition, the number of frames you
can acquire is limited by the amount of memory you have available on your
system for image storage. A large acquisition can potentially fill all available
system memory. For large acquisitions, you might want to remove frames from
the buffer as they are logged. For more information, see “Moving Multiple
Frames into the Workspace” on page 5-3. To learn how to empty the memory
buffer, see “Freeing Memory” on page 4-29.

Video stream . . .F4F3F2F1 F5

Start object;
immediate trigger
executes.

F14F13F12F11

Memory buffer

Toolbox logs
frames to
buffer.

F10F9F8F7F6

Acquisition
stops.

FramesPerTrigger=10

F15

F4F3F2F1 F5 F10F9F8F7F6
4-17

4 Acquiring Image Data

4-1
Specifying a Noncontiguous Acquisition
Although FramesPerTrigger specifies the number of frames to acquire, these
frames do not have to be captured contiguously from the video stream. You can
specify that the toolbox skip a certain number of frames between frames it
acquires. To do this, set the value of the FrameGrabInterval property.

Note The FrameGrabInterval property controls the interval at which the
toolbox acquires frames from the video stream (measured in frames). This
property does not control the rate at which frames are provided by the device,
otherwise known as the frame rate.

The following figure illustrates how the FrameGrabInterval property affects
an acquisition.
.

Impact of FrameGrabInterval on Data Logging

Video stream . . .F4F3F2F1 F5

Start object;
immediate trigger
executes.

F14F13F12F11

Memory buffer

Toolbox logs
frames to
buffer.

F10F9F8F7F6

Acquisition
stops.

FramesPerTrigger=5

F15

F7F5F3F1 F9 FrameGrabInterval=2
8

Controlling Logging Parameters
Determining How Much Data Has Been Logged
To determine how many frames have been acquired by a video input object,
check the value of the FramesAcquired property. This property tells how many
frames the object has acquired since it was started. To determine how many
frames are currently available in the memory buffer, see “Determining How
Many Frames Are Available” on page 4-20.

Example: Acquiring 100 Frames
This example illustrates how you can specify the amount of data to be acquired
and determine how much data has been acquired. (For an example of
configuring a time-based acquisition, see “Example: Acquiring 10 Seconds of
Image Data” on page 5-5.)

1 Create an image acquisition object — This example creates a video input
object for a Windows image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

2 Configure properties — Specify the amount of data you want to acquire as
the number of frames per trigger. By default, a video input object acquires
10 frames per trigger. For this example, set the value of this property to 100.

set(vid,'FramesPerTrigger',100)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After logging
the specified number of frames, the object stops running.

4 Check how many frames have been acquired — To verify that the
specified number of frames has been acquired, check the value of the
FramesAcquired property. Note that the object continuously updates the
value of the FramesAcquired property as the acquisition progresses. If you
4-19

4 Acquiring Image Data

4-2
view the value of this property several times during an acquisition, you can
see the number of frames acquired increase until logging stops.

vid.FramesAcquired
ans =

100

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining How Many Frames Are Available
The FramesAcquired property tells how many frames the object has logged
since it was started, described in “Determining How Much Data Has Been
Logged” on page 4-19. Once you move frames from the memory buffer into the
MATLAB workspace, the number of frames stored in the memory buffer will
differ from the FramesAcquired value. To determine how many frames are
currently available in the memory buffer, check the value of the
FramesAvailable property.

Note The FramesAvailable property tells the number of frames in the
memory buffer, not in the disk log, if LoggingMode is configured to 'disk' or
'disk&memory'. Because it takes longer to write frames to a disk file than to
memory, the number of frames stored in the disk log might lag behind those
stored in the memory buffer. To see how many frames are available in the disk
log, look at the value of the DiskLoggerFrameCount property. See “Logging
Image Data to Disk” on page 4-32 for more information.

This example illustrates the distinction between the FramesAcquired and the
FramesAvailable properties:

1 Create an image acquisition object — This example creates a video input
object for a Windows image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.
0

Controlling Logging Parameters
vid = videoinput('winvideo',1);

2 Configure properties — For this example, configure an acquisition of 15
frames.

set(vid,'FramesPerTrigger',15)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After logging
the specified number of frames, the object stops running.

4 Check how many frames have been acquired — To determine how many
frames the object has acquired and how many frames are available in the
memory buffer, check the value of the FramesAcquired and
FramesAvailable properties.

vid.FramesAcquired
ans =

15

vid.FramesAvailable

ans =

15

The object updates the value of these properties continuously as it acquires
frames of data. The following figure illustrates how the object puts acquired
frames in the memory buffer as the acquisition progresses.
4-21

4 Acquiring Image Data

4-2
.

Frames Available After Initial Trigger Execution

5 Remove frames from the memory buffer — When you remove frames from
the memory buffer, the object decrements the value of the FramesAvailable
property by the number of frames removed.

To remove frames from the memory buffer, call the getdata function,
specifying the number of frames to retrieve. For more information about
using getdata, see “Bringing Image Data into the MATLAB Workspace” on
page 5-3.

data = getdata(vid,5);

After you execute the getdata function, check the values of the
FramesAcquired and FramesAvailable properties again. Notice that the
FramesAcquired property remains unchanged but the object has
decremented the value of the FramesAvailable property by the number of
frames removed from the memory buffer.

vid.FramesAcquired

ans =

15

vid.FramesAvailable

Video stream . . .F4F3F2F1 F5

Start object;
immediate trigger
executes.

F14F13F12F11

Memory buffer

Toolbox logs
frames to
buffer.

F10F9F8F7F6

FramesPerTrigger=15

F15

F4F3F2F1 F5 F10F9F8F7F6 F11 F14F13F12 F15

Acquisition
stops.
2

Controlling Logging Parameters
ans =

10

The following figure illustrates the contents of the memory buffer after
frames are removed.

.

Contents of Memory Buffer Before and After Removing Frames

6 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

F4F3F2F1 F5 F14F13F12F11F10F9F8F7F6 F15

Memory buffer

F10F9F8F7F6 F11 F14F13F12 F15

T1: After
logging is
complete

T2: After
getdata
removes 5
frames

Memory buffer FramesAcquired=15
FramesAvailable=15

FramesAcquired=15
FramesAvailable=10
4-23

4 Acquiring Image Data

4-2
Delaying Data Logging After a Trigger
In some image acquisition setups, you might not want to log the first few
frames returned from your camera or other imaging device. For example, some
cameras require a short warmup time when activated. The quality of the first
few images returned by these cameras might be too dark to be useful for your
application.

To account for this characteristic of your setup, you can specify that the toolbox
skip a specified number of frames after a trigger executes. You use the
TriggerFrameDelay property to specify the number of frames you want to skip
before logging begins.

For example, to specify a delay of five frames before data logging begins after
a trigger executes, you would set the value of the TriggerFrameDelay property
to 5. The number of frames captured is defined by the FramesPerTrigger
property and is unaffected by the delay.

set(vid,'TriggerFrameDelay',5);

This figure illustrates this scenario.

Specifying a Delay Before Data Logging Begins

Video stream . . .F4F3F2F1 F5

Start object;
video stream
begins.

F14F13F12F11

F13F12F11F10F9

Trigger
occurs.

Memory buffer

Acquisition
stops.

Toolbox logs frames
to buffer.

F10F9F8F7F6

TriggerFrameDelay=5 FramesPerTrigger=5

Logging
begins.
4

Controlling Logging Parameters
Specifying Multiple Triggers
When a trigger occurs, a video input object acquires the number of frames
specified by the FramesPerTrigger property and logs the data to a memory
buffer, a disk file, or both.

When it acquires the specified number of frames, the video input object stops
running. To execute another trigger, you must restart the video input object.
Restarting an object causes it to delete all the data it has stored in the memory
buffer from the previous trigger. To execute multiple triggers, retaining the
data from each trigger, you must specify a value for the TriggerRepeat
property.

Note that the TriggerRepeat property specifies the number of additional times
a trigger executes. For example, to execute a trigger three times, you would set
the value of the TriggerRepeat property to 2. In the following, vid is a video
input object created with the videoinput function.

set(vid,'TriggerRepeat',2);

This figure illustrates an acquisition with three executions of a manual trigger.
In the figure, the FramesPerTrigger property is set to 3.

Executing Multiple Triggers

Video stream . . .F4F3F2F1 F5

Start occurs,
video stream
starts.

F14F13F12F11

Manual
trigger
occurs.

Acquisition
stops.

Toolbox logs
frames to
buffer.

F10F9F8F7F6 F15

F9F8F6F5F4

Memory buffer

Manual
trigger
occurs.

Manual
trigger
occurs.

F10 F12 F13 F14
4-25

4 Acquiring Image Data

4-2
Waiting for an Acquisition to Finish
When you trigger an acquisition, control returns to the command line before
data logging is complete. In some cases, you might want to delay further
processing until the number of frames you requested has been logged. To block
the command line until logging is finished, use the wait function.

Note The wait function can be very useful when you create a script or
function in an M-file.

The following example illustrates the wait function.

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Configure properties — To illustrate how wait blocks until all the specified
frames become available, configure an acquisition large enough to produce a
noticeable duration.

set(vid,'FramesPerTrigger',100)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer.

4 Block the command line until the acquisition finishes — After the start
function returns, call the wait function.

wait(vid)

The wait function returns control to the command line when the value of the
video input object’s Running property changes from 'on' to 'off'.
6

Waiting for an Acquisition to Finish
5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
4-27

4 Acquiring Image Data

4-2
Managing Memory Usage
The first time it needs to allocate memory to store an image frame, the toolbox
determines the total amount of memory it has available to store acquired image
frames. The toolbox sets this value, called the frame memory limit, to be all the
physical memory that is available when the toolbox is first accessed.

Image data can require a lot of memory. For example, even a relatively small
(96-by-128) 24-bit color image requires almost 37 K bytes for each frame.

whos

Name Size Bytes Class

rgb_image 96x128x3 36864 uint8 array

This section describes how to

• Monitor the toolbox’s memory usage

• Modify the toolbox’s frame memory limit, if necessary

• Empty frames from the memory buffer

To see an example of monitoring memory usage in a callback function, see
“Example: Monitoring Memory Usage” on page 6-16.

Monitoring Memory Usage
The toolbox includes a utility function, called imaqmem, that provides
information about the toolbox’s current memory usage.

The imaqmem function returns a structure that contains several memory usage
statistics including the total amount of physical memory available, the amount
of physical memory currently in use, and a value, called the memory load, that
characterizes the current memory usage.

To illustrate, this example calls imaqmem and then uses the frame memory limit
and the current frame memory usage statistics to calculate how much memory
is left for image frame storage.

out = imaqmem;
mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;
8

Managing Memory Usage
Modifying the Frame Memory Limit
To enable your image acquisition application to work with more image frames,
you might want to increase the frame memory limit. Using the imaqmem
function you can determine the current frame memory limit and specify a new
one.

To illustrate, this example calls imaqmem to get the current frame memory limit,
which is approximately 28 MB, calls imaqmem to specify a new frame memory
limit (36 MB), and then calls imaqmem again to verify the new setting.

out = imaqmem;

out.FrameMemoryLimit

ans =

 28389376

imaqmem(36000000)

out = imaqmem;

out.FrameMemoryLimit

ans =

 36000000

Freeing Memory
At times, while acquiring image data, you might want to delete some or all of
the frames that are stored in memory. Using the flushdata function, you can
delete all the frames currently stored in memory or only those frames
associated with the execution of a trigger.

The following example illustrates how to use flushdata to delete all the frames
in memory or one trigger’s worth of frames.

1 Create an image acquisition object — This example creates a video input
object for a Windows image acquisition device. To run this example on your
4-29

4 Acquiring Image Data

4-3
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

2 Configure properties — For this example, configure an acquisition of five
frames per trigger and, to show the effect of flushdata, configure multiple
triggers using the TriggerRepeat property.

vid.FramesPerTrigger = 5
vid.TriggerRepeat = 2;

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger, acquires five frames of data, and
repeats this trigger two more times. After logging the specified number of
frames, the object stops running.

To verify that the object acquired data, view the value of the
FramesAvailable property. This property reports how many frames are
currently stored in the memory buffer.

vid.FramesAvailable
ans =

15

4 Delete a trigger’s worth of image data — Call the flushdata function,
specifying the mode 'triggers'. This deletes the frames associated with the
oldest trigger.

flushdata(vid,'triggers');

The following figure shows the frames acquired before and after the call to
flushdata. Note how flushdata deletes the frames associated with the
oldest trigger.
0

Managing Memory Usage
.

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

10

5 Empty the entire memory buffer — Calling flushdata without specifying
the mode deletes all the frames stored in memory.

flushdata(vid);

To verify that the object deleted the frames, view the value of the
FramesAvailable property.

vid.FramesAvailable
ans =

0

6 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

F4F3F2F1 F5 F14F13F12F11F10F9F8F7F6 F15

Memory buffer

F10F9F8F7F6 F11 F14F13F12 F15

T1: After
logging is
complete

T2: After
call to
flushdata

Memory buffer FramesAcquired=15
FramesAvailable=15

FramesAcquired=15
FramesAvailable=10
4-31

4 Acquiring Image Data

4-3
Logging Image Data to Disk
While a video input object is running, you can log the image data being
acquired to a disk file. Logging image data to disk provides a record of your
data.

To set up data logging to disk, perform these steps:

1 Create a disk file to store the data. The toolbox logs the data to disk in
Audio-Video Interleave (AVI) format because this format provides data
compression capabilities that allow for efficient storage. You must use the
MATLAB avifile function to create this log file. For more information, see
“Creating an AVI File Object for Logging” on page 4-33.

2 Set the value of the video input object LoggingMode property to 'disk' or
'disk&memory'.

3 Set the value of the video input object DiskLogger property to the AVI file
object created in step 1.

The following figure shows how the toolbox adds frames to the AVI file when a
trigger occurs. With each subsequent trigger, the toolbox appends the acquired
frames to the end of the AVI file. The frames must have the same dimensions.
For an example of how to set up disk data logging, see “Example: Logging Data
to Disk” on page 4-35.
2

Logging Image Data to Disk
.

Logging Data to a Disk File

Creating an AVI File Object for Logging
To create an AVI file in the MATLAB environment, use the avifile function.
You specify the name of the AVI file to the avifile function. For example, to
create the AVI file named my_datalog.avi, enter this code at the MATLAB
command prompt.

aviobj = avifile('my_datalog.avi');

The avifile function returns an AVI file object. You can use the AVI file object
returned by the avifile function, aviobj, to modify characteristics of the AVI
file by setting the values of the object’s properties. For example, you can specify
the codec used for data compression or specify the desired quality of the output.
For complete information about AVI file objects and their properties, see the
MATLAB avifile documentation.

Toolbox logs
frames to disk
file.

Video stream . . .F2 F3 F4 F15F8F7F6F5 F16F1 F17 F18 F20F19 F21

F7F6F5F4F3

Trigger
occurs.

Disk file

F20F19F18F17F16

Start occurs;
video stream
begins.

Acquisition
stops.

FramesPerTrigger=5 FramesPerTrigger=5

Trigger
occurs.

Acquisition
stops.
4-33

4 Acquiring Image Data

4-3
Guidelines for Using an AVI File Object to Log Image Data
When you specify the AVI file object as the value of the DiskLogger property,
you are creating a copy of the AVI file object. Do not access the AVI file object
using the original variable name, aviobj, while the video input object is using
the file for data logging. To avoid file access conflicts, keep in mind these
guidelines when using an AVI file for data logging:

• Do not close an AVI file object while it is being used for data logging.

• Do not use the AVI file addframe function to add frames to the AVI file object
while it is being used for data logging.

• Do not change the values of any AVI file object properties while it is being
used for data logging.

Closing the DiskLogger AVI file
When data logging has ended, close the AVI file to make it accessible outside
the MATLAB environment. Use the value of the video input object DiskLogger
property to reference the AVI file, rather than the variable returned when you
created the AVI file object (aviobj). See “Example: Logging Data to Disk” for
an example.

Before you close the file, make sure that the video input object has finished
logging frames to disk. Because logging to disk takes more time than logging to
memory, the completion of disk logging can lag behind the completion of
memory logging. To determine when logging to disk is complete, check the
value of the DiskLoggerFrameCount property; this property tells how many
frames have been logged to disk.

Note When you log frames to disk, the video input object queues the frames
for writing but the operating system might not perform the write operation
immediately. Closing an AVI file causes the data to be written to the disk.
4

Logging Image Data to Disk
Example: Logging Data to Disk
This example illustrates how to configure a video input object to log data to a
disk file:

1 Create a MATLAB AVI file object – Create the MATLAB AVI file that you
want to use for data logging, using the avifile function. You specify the
name of the AVI file when you create it.

my_log = 'my_datalog.avi';
aviobj = avifile(my_log);

aviobj

Adjustable parameters:
 Fps: 15.0000
 Compression: 'Indeo3'
 Quality: 75
 KeyFramePerSec: 2.1429
 VideoName: 'my_datalog.avi'

Automatically updated parameters:
 Filename: 'my_datalog.avi'
 TotalFrames: 0
 Width: 0
 Height: 0
 Length: 0
 ImageType: 'Unknown'
 CurrentState: 'Open'

2 Configure properties of the AVI file object – You can optionally configure
the properties of the AVI file object. The AVI file object supports properties
that control the data compression used, image quality, and other
characteristics of the file. The example sets the quality property to a
midlevel value. By lowering the quality, the AVI file object creates smaller
log files.

aviobj.Quality = 50;
4-35

4 Acquiring Image Data

4-3
3 Create a video input object — This example creates a video input object for
a Matrox image acquisition device. To run this example on your system, use
the imaqhwinfo function to get the video input object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

4 Configure video input object properties — Set up disk logging by setting
the value of the DiskLogger property to be aviobj, the AVI file object
created in step 1. Then, set the LoggingMode property to 'disk' (or
'disk&memory'). This example also sets the TriggerRepeat property.

vid.LoggingMode = 'disk&memory';
vid.DiskLogger = aviobj;
vid.TriggerRepeat = 3;

5 Start the video input object — Start logging data to disk.

start(vid)

The object executes an immediate trigger, acquires frames of data, repeats
the trigger three additional times, and then stops.

To verify that all the frames have been logged to the AVI file, check the value
of the DiskLoggerFrameCount property. This property tells the number of
frames that have been logged to disk.

vid.DiskLoggerFrameCount

ans =

40
6

Logging Image Data to Disk
Note Because it takes longer to write frames to a disk file than to memory,
the value of the DiskLoggerFrameCount property can lag behind the value of
the FramesAvailable property, which specifies the number of frames logged to
memory.

To verify that a disk file was created, go to the directory in which the log file
resides and make sure it exists. The exist function returns 2 if the file
exists.

if(exist(my_log)==2)
disp('AVI file created.')

6 Close the AVI file object — Close the AVI file to make it available outside
the MATLAB environment. Closing the AVI file object ensures that the
logged data is written to the disk file. Be sure to use the value of the video
input object DiskLogger property, vid.DiskLogger, to reference the AVI file
object, not the original variable, aviobj, returned by the avifile function.

aviobj = close(vid.DiskLogger);

Use the original variable, aviobj, as the return value when closing an AVI
file object.

7 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
4-37

4 Acquiring Image Data

4-3
8

5

Working with Acquired
Image Data

When you trigger an acquisition, the toolbox stores the image data in a memory buffer, a disk file, or
both. To work with this data, you must bring it into the MATLAB workspace.

This chapter describes how you use video input object properties and toolbox functions to bring the
logged data into the MATLAB workspace.

Overview (p. 5-2) Provides an overview of data logging and the process of bringing frames
into the MATLAB workspace

Bringing Image Data into
the MATLAB Workspace
(p. 5-3)

Describes how to bring acquired image data into the MATLAB
workspace

Working with Image Data in
the MATLAB Workspace
(p. 5-12)

Describes the format of the image data returned to the MATLAB
workspace

Retrieving Timing
Information (p. 5-19)

Describes how to retrieve acquisition timing information

5 Working with Acquired Image Data

5-2
Overview
When a trigger occurs, the toolbox acquires frames from the video stream and
logs the frames to a buffer in memory, a disk file, or both, depending on the
value of the LoggingMode property. To work with this logged image data, you
must bring it into the MATLAB workspace.

The following figure illustrates a group of frames being acquired from the video
stream, logged to memory and disk, and brought into the MATLAB workspace
as a multidimensional numeric array. Note that when frames are brought into
the MATLAB workspace, they are removed from the memory buffer.
.

Overview of Image Acquisition

Start object;
video stream
begins.

F10F9F8F7F6 F10F9F8F7F6

Trigger occurs;
data logging
begins.

Memory buffer

Disk file

F10F9F8F7F6

Move image frames
into the MATLAB
workspace.

Toolbox logs image
frames to memory
and/or disk file.

Video stream . . .F4F3F2F1 F5 F14F13F12F11F10F9F8F7F6

Acquisition
stops.

F15

MATLAB array

Bringing Image Data into the MATLAB Workspace
Bringing Image Data into the MATLAB Workspace
The toolbox provides three ways to move frames from the memory buffer into
the MATLAB workspace:

• Removing multiple frames from the buffer — To move a specified number
of frames from the memory buffer into the workspace, use the getdata
function. The getdata function removes the frames from the memory buffer
as it moves them into the workspace. The function blocks the MATLAB
command line until all the requested frames are available, or until a timeout
value expires. For more information, see “Moving Multiple Frames into the
Workspace” on page 5-3.

• Viewing the most recently acquired frames in the buffer — To bring the
most recently acquired frames in the memory buffer into the workspace
without removing them from the buffer, use the peekdata function. When
returning frames, peekdata starts with the most recently acquired frame
and works backward in the memory buffer. In contrast, getdata starts at the
beginning of the buffer, returning the oldest acquired frame first. peekdata
does not block the command line and is not guaranteed to return all the
frames you request. For more information, see “Viewing Frames in the
Memory Buffer” on page 5-6.

• Bring a single frame of data into the workspace — As a convenience, the
toolbox provides the getsnapshot function, which returns a single frame of
data into the MATLAB workspace. Because the getsnapshot function does
not require starting the object or triggering an acquisition, it is the easiest
way to bring image data into the workspace. getsnapshot is independent of
the memory buffer; it can return a frame even if the memory buffer is empty,
and the frame returned does not affect the value of the FramesAvailable
property. For more information, see “Bringing a Single Frame into the
Workspace” on page 5-10.

Moving Multiple Frames into the Workspace
To move multiple frames of data from the memory buffer into the MATLAB
workspace, use the getdata function. By default, getdata retrieves the number
of frames specified in the FramesPerTrigger property but you can specify any
number. See the getdata reference page for complete information about this
function.
5-3

5 Working with Acquired Image Data

5-4
Note The getdata function removes the frames from the memory buffer that
it moves into the workspace.

In this figure, getdata is called at T1 with a request for 15 frames but only six
frames are available in the memory buffer. getdata blocks until the specified
number of frames becomes available, at T2, at which point getdata moves the
frames into the MATLAB workspace and returns control to the command
prompt.

getdata Blocks Until Frames Become Available

F5F4F3F2F1 F6
Contents of
memory buffer
at T1

T0:
Logging begins.

T1:
getdata(vid,15)

Time

F5F4F3F2F1 F6 F8F7 F9 F10
Contents of
memory buffer
at T2

F11 F12

T2:
getdata returns.

= Frame returned by getdata

F13 F14 F15

getdata blocks

Bringing Image Data into the MATLAB Workspace
Example: Acquiring 10 Seconds of Image Data
This example shows how you can configure an approximate time-based
acquisition using the FramesPerTrigger property:

1 Create an image acquisition object — This example creates a video input
object for a Windows image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('winvideo',1);

2 Configure properties — To acquire 10 seconds of data, determine the
frame rate of your image acquisition device and then multiply the frame rate
by the number of seconds of data you want to acquire. The product of this
multiplication is the value of the FramesPerTrigger property.

For this example, assume a frame rate of 30 frames per second (fps).
Multiplying 30 by 10, you need to set the FramesPerTrigger property to the
value 300.

set(vid,'FramesPerTrigger',300)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but the object continues logging the data to the memory buffer. After logging
the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — To verify that you
acquired the amount of data you wanted, use the optional getdata syntax
that returns the timestamp of every frame acquired. The difference between
the first timestamp and the last timestamp should approximate the amount
of data you expected.
5-5

5 Working with Acquired Image Data

5-6
[data time] = getdata(vid,300);

elapsed_time = time(300) - time(1)

10.0467

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Frames in the Memory Buffer
To view sample frames from the memory buffer without removing them, use
the peekdata function.

The peekdata function always returns the most recently acquired frames in the
memory buffer. For example, if you request three frames, peekdata returns the
most recently acquired frame in the buffer at the time of the request and the
two frames that immediately precede it.

The following figure illustrates this process. The command peekdata(vid,3)
is called at three different times (T1, T2, and T3). The shaded frames indicate
the frames returned by peekdata at each call. (peekdata returns frames
without removing them from the memory buffer.)

Note in the figure that, at T3, only two frames have become available since the
last call to peekdata. In this case, peekdata returns only the two frames, with
a warning that it returned less data than was requested.

Bringing Image Data into the MATLAB Workspace
Frames Returned by peekdata

The following example illustrates how to use peekdata:

1 Create an image acquisition object — This example creates a video input
object for a Data Translation image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a manual trigger. You
must use the triggerconfig function to specify the trigger type.

triggerconfig(vid,'manual')

F5F4F3F2F1 F6
Contents of
memory buffer
at T1

T0:
Logging begins.

T1:
peekdata(vid,3)

F5F4F3F2F1 F6

Time

F8F7 F9 F10Contents of
memory buffer
at T2

T2:
peekdata(vid,3)

F5F4F3F2F1 F6 F8F7 F9 F10
Contents of
memory buffer
at T3

F11 F12

T3:
peekdata(vid,3)

= Frame returned by peekdata
peekdata does not return F10
because it was already
returned at T2.
5-7

5 Working with Acquired Image Data

5-8
In addition, configure a large enough acquisition to allow several calls to
peekdata before it finishes.

set(vid,'FramesPerTrigger',300);

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The video object is now running but not logging.

vid.Running
ans =
on

vid.Logging
ans =
off

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

4 Use peekdata to view frames before a trigger — If you call peekdata
before you trigger the acquisition, peekdata can only return a single frame
of data because data logging has not been initiated and the memory buffer
is empty. If more than one frame is requested, peekdata issues a warning
that it is returning fewer than the requested number of frames.

pdata = peekdata(vid,50);
Warning: PEEKDATA could not return all the frames requested.

Verify that peekdata returned a single frame. A single frame of data should
have the same width and height as specified by the ROIPosition property
and the same number of bands, as specified by the NumberOfBands property.
In this example, the video format of the data is RGB so the value of the
NumberOfBands property is 3.

Bringing Image Data into the MATLAB Workspace
whos
 Name Size Bytes Class

pdata 96x128x3 36864 uint8 array
 vid 1x1 1060 videoinput object

Verify that the object has not acquired any frames.

get(vid,'FramesAcquired')
ans =

0

5 Trigger the acquisition — Call the trigger function to trigger an
acquisition.

trigger(vid)

The object begins logging frames to the memory buffer.

6 View the most recently acquired frames — While the acquisition is in
progress, call peekdata several times to view the latest frames in the
memory buffer. Depending on the number of frames you request, and the
timing of these requests, peekdata might return fewer than the number of
frames you specify.

pdata = peekdata(vid,50);

To verify that peekdata returned the frames you requested, check the
dimensions of pdata. peekdata returns a four-dimensional array of frames,
where the last dimension indicates the number of frames returned.

whos
 Name Size Bytes Class

pdata 4-D 1843200 uint8 array
 vid 1x1 1060 videoinput object

size(pdata)

ans =

96 128 3 50
5-9

5 Working with Acquired Image Data

5-1
7 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Bringing a Single Frame into the Workspace
To bring a single frame of image data into the MATLAB workspace, use the
getsnapshot function. You can call the getsnapshot function at any time after
object creation.

This example illustrates how simple it is to use the getsnapshot function.

1 Create an image acquisition object — This example creates a video input
object for a Matrox device. To run this example on your system, use the
imaqhwinfo function to get the object constructor for your image acquisition
device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Bring a frame into the workspace — Call the getsnapshot function to
bring a frame into the workspace. Note that you do not need to start the
video input object before calling the getsnapshot function.

frame = getsnapshot(vid);

The getsnapshot function returns an image of the same width and height
as specified by the ROIPosition property and the same number of bands as
specified by the NumberOfBands property. In this example, the video format
of the data is RGB so the value of the NumberOfBands property is 3.

whos
 Name Size Bytes Class

frame 96x128x3 36864 uint8 array
 vid 1x1 1060 videoinput object
0

Bringing Image Data into the MATLAB Workspace
Note that the frame returned by getsnapshot is not removed from the
memory buffer, if frames are stored there, and does not affect the value of
the FramesAvailable property.

3 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
5-11

5 Working with Acquired Image Data

5-1
Working with Image Data in the MATLAB Workspace
The illustrations in this documentation show the video stream and the contents
of the memory buffer as a sequence of individual frames. In reality, each frame
is a multidimensional array. The following figure illustrates the format of an
individual frame.

Format of an Individual Frame

This section describes how the toolbox

• Determines the dimensions of the data returned

• Determines the data type used for the data

• Determines the color space of the data

This section also describes several ways to view acquired image data.

Height

Band 3

Band 1

Band 2
Width

F4F3F2F1 F5 F14F13F12F11F10F9F8F7F6 F15

Memory buffer
2

Working with Image Data in the MATLAB Workspace
Determining the Dimensions of Image Data
The video format used by the image acquisition device is the primary
determinant of the width, height, and the number of bands in each image
frame. Image acquisition devices typically support multiple video formats. You
select the video format when you create the video input object (described in
“Specifying the Video Format” on page 3-12). The video input object stores the
video format in the VideoFormat property.

Industry-standard video formats, such as RS170 or PAL, include specifications
of the image frame width and height, referred to as the image resolution. For
example, the RS170 standard defines the width and height of the image frame
as 640-by-480 pixels. Other devices, such as digital cameras, support the
definition of many different, nonstandard image resolutions. The video input
object stores the video resolution in the VideoResolution property.

Note Because devices typically express video resolution as width-by-height,
the toolbox uses this convention for the VideoResolution property. However,
when data is brought into the MATLAB workspace, the image frame
dimensions are listed in reverse order, height-by-width, because MATLAB
expresses matrix dimensions as row-by-column.

For devices that support the definition of a region of interest (ROI) in the image
being captured, the dimensions of the ROI determine the dimensions of the
image frames returned. The VideoResolution property specifies the
dimensions of the image data being provided by the device; the ROIPosition
property specifies the dimensions of the image frames being logged. See the
ROIPosition property reference page for more information.

Each image frame is three dimensional; however, the video format determines
the number of bands in the third dimension. For color video formats, such as
RGB, each image frame has three bands: one each for the red, green, and blue
data. Other video formats, such as the grayscale RS170 standard, have only a
single band. The video input object stores the size of the third dimension in the
NumberOfBands property.

The following example illustrates how video format affects the size of the image
frames returned.
5-13

5 Working with Acquired Image Data

5-1
1 Select a video format — Use the imaqhwinfo function to view the list of
video formats supported by your image acquisition device. This example
shows the video formats supported by a Matrox Orion frame grabber. The
formats are industry standard, such as RS170, NTSC, and PAL. These
standards define the image resolution.

info = imaqhwinfo('matrox');

info.DeviceInfo.SupportedFormats

ans =
Columns 1 through 4

 'M_RS170' 'M_RS170_VIA_RGB' 'M_CCIR' 'M_CCIR_VIA_RGB'

Columns 5 through 8

'M_NTSC' 'M_NTSC_RGB' 'M_NTSC_YC' 'M_PAL'

 Columns 9 through 10

'M_PAL_RGB' 'M_PAL_YC'

2 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device using the default video format,
RS170. To run this example on your system, use the imaqhwinfo function to
get the object constructor for your image acquisition device and substitute
that syntax for the following code.

vid = videoinput('matrox',1);

3 View the video format and video resolution properties — The toolbox
creates the object with the default video format. This format defines the
video resolution.

get(vid,'VideoFormat')

ans =

M_RS170
4

Working with Image Data in the MATLAB Workspace
get(vid,'VideoResolution')

ans =

[640 480]

4 Bring a single frame into the workspace — Call the getsnapshot function
to bring a frame into the workspace.

frame = getsnapshot(vid);

The dimensions of the returned data reflect the image resolution and the
value of the NumberOfBands property.

vid.NumberOfBands
ans =

1

size(frame)

ans =

480 640

5 Start the image acquisition object — Call the start function to start the
image acquisition object.

start(vid)

The object executes an immediate trigger and begins acquiring frames of
data.

6 Bring multiple frames into the workspace — Call the getdata function to
bring multiple image frames into the MATLAB workspace.

data = getdata(vid,10);

The getdata function brings 10 frames of data into the workspace. Note that
the returned data is a four-dimensional array: each frame is
three-dimensional and the nth frame is indicated by the fourth dimension.
5-15

5 Working with Acquired Image Data

5-1
size(data)

ans =

480 640 1 10

7 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining the Data Type of Image Frames
By default, the toolbox returns image frames in the data type used by the image
acquisition device. If there is no MATLAB data type that matches the object's
native data type, getdata chooses a MATLAB data type that preserves
numerical accuracy. For example, in RGB 555 format, each color component is
expressed in 5-bits. getdata returns each color as a uint8 value.

You can specify the data type you want getdata to use for the returned data.
For example, if you want the image frame returned as an array of class double,
use this syntax. To see a list of all the data types supported, see the getdata
reference page.

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Bring a single frame into the workspace — Call the getsnapshot function
to bring a frame into the workspace.

frame = getsnapshot(vid);

3 View the class of the returned data — Use the class function to determine
the data type used for the returned image data.
6

Working with Image Data in the MATLAB Workspace
class(frame)

ans =

uint8

4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Determining the Color Space
When you select the video format of the video stream, you can often also choose
the color space, that is, the way color information is represented numerically.
Many devices represent colors as RGB values. In this color space, colors are
represented as a combination of various intensities of red, green, and blue.
There are, however, other color spaces.

For example, the YCbCr color space (also known as YUV) is widely used for
digital video. In this format, luminance (brightness or intensity) information is
stored as a single component (Y). Chrominance (color) information is stored as
two color-difference components (Cb and Cr). Cb represents the difference
between the blue component and a reference value. Cr represents the
difference between the red component and a reference value.

Note To display image frames using the image or imagesc functions, the data
must use the RGB color space.

The toolbox can return image data in several color spaces, including grayscale,
RGB, YCbCr, NTSC, and HSV. To determine the color representation used by
your data, check the value of the ReturnedColorSpace property. For example,
the color space used for the data in the previous example was RGB.
5-17

5 Working with Acquired Image Data

5-1
1 Create an image acquisition object — This example creates a video input
object for a generic Windows image acquisition device. To run this example
on your system, use the imaqhwinfo function to get the object constructor for
your image acquisition device and substitute that syntax for the following
code.

vid = videoinput('winvideo',1);

2 View the color space used for the data — View the value of the
ReturnedColorSpace property.

vid.ReturnedColorSpace

ans =

rgb

3 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid

Viewing Acquired Data
Once you bring the data into the MATLAB workspace, you can view it as you
would any other image in MATLAB.

The Image Acquisition Toolbox includes a function, imaqmontage, that you can
use to view all the frames of a multiframe image array in a single MATLAB
image object. imaqmontage arranges the frames so that they roughly form a
square. imaqmontage can be useful for visually comparing multiple frames.

MATLAB includes two functions, image and imagesc, that display images in a
figure window. Both functions create a MATLAB image object to display the
frame. You can use image object properties to control aspects of the display.
The imagesc function automatically scales the input data.

The Image Processing Toolbox includes an additional display routine called
imshow. Like image and imagesc, this function creates a MATLAB image
object. However, imshow also automatically sets various image object
properties to optimize the display.
8

Retrieving Timing Information
Retrieving Timing Information
This section describes how the toolbox provides acquisition timing information,
particularly,

• Determining when a trigger executed

• Determining when a particular frame was acquired

To see an example of retrieving timing information, see “Example:
Determining the Frame Delay Duration” on page 5-21.

Determining When a Trigger Executed
To determine when the a trigger executed, check the information returned by
a trigger event in the object’s event log. You can also get access to this
information in a callback function associated with a trigger event. For more
information, see “Retrieving Event Information” on page 6-6.

As a convenience, the toolbox returns the time of the first trigger execution in
the video input object’s InitialTriggerTime property. This figure indicates
which trigger is returned in this property when multiple triggers are
configured.

InitialTriggerTime Records First Trigger Execution

The trigger timing information is stored in MATLAB clock vector format. The
following example displays the time of the first trigger for the video input object
vid. The example uses the MATLAB datestr function to convert the
information into a form that is more convenient to view.

Video stream . . .F4F3F2F1 F5

Start occurs;
video stream
starts.

F14F13F12F11

Manual
trigger
occurs.

Acquisition
stops.

F10F9F8F7F6 F15

InitialTriggerTime

Manual
trigger
occurs.

Manual
trigger
occurs.
5-19

5 Working with Acquired Image Data

5-2
datestr(vid.InitialTriggerTime)

ans =

02-Mar-2003 13:00:24

Determining When a Frame Was Acquired
The toolbox provides two ways to determine when a particular frame was
acquired:

• By the absolute time of the acquisition

• By the elapsed time relative to the execution of the trigger

You can use the getdata function to retrieve both types of timing information.

Getting the Relative Acquisition Time
When you use the getdata function, you can optionally specify two return
values. One return value contains the image data; the other return value
contains a vector of timestamps that measure, in seconds, the time when the
frame was acquired relative to the first trigger.

[data time] = getdata(vid);

To see an example, see “Example: Determining the Frame Delay Duration” on
page 5-21.

Getting the Absolute Acquisition Time
When you use the getdata function, you can optionally specify three return
values. The first contains the image data, the second contains a vector of
relative acquisition times, and the third is an array of structures where each
structure contains metadata associated with a particular frame.

[data time meta] = getdata(vid);

Each structure in the array contains the following four fields. The AbsTime field
contains the absolute time the frame was acquired. You can also retrieve this
0

Retrieving Timing Information
metadata by using event callbacks. See “Retrieving Event Information” on
page 6-6 for more information.

Example: Determining the Frame Delay Duration
To illustrate, this example calculates the duration of the delay specified by the
TriggerFrameDelay property.

1 Create an image acquisition object — This example creates a video input
object for a Data Translation image acquisition device using the default
video format. To run this example on your system, use the imaqhwinfo
function to get the object constructor for your image acquisition device and
substitute that syntax for the following code.

vid = videoinput('dt',1);

2 Configure properties — For this example, configure a trigger frame delay
large enough to produce a noticeable duration.

set(vid,'TriggerFrameDelay',50)

3 Start the image acquisition object — Call the start function to start the
image acquisition object.

Frame Metadata

Field Name

AbsTime Absolute time the frame was acquired, returned in
MATLAB clock format

[year month day hour minute seconds]

FrameNumber Frame number relative to when the object was started

RelativeFrame Frame number relative to trigger execution

TriggerIndex Trigger the event is associated with. For example, when
the object starts, the associated trigger is 0. Upon stop,
it is equivalent to the TriggersExecuted property.
5-21

5 Working with Acquired Image Data

5-2
start(vid)

The object executes an immediate trigger and begins acquiring frames of
data. The start function returns control to the command line immediately
but data logging does not begin until the trigger frame delay expires. After
logging the specified number of frames, the object stops running.

4 Bring the acquired data into the workspace — Call the getdata function
to bring frames into the workspace. Specify a return value to accept the
timing information returned by getdata.

[data time] = getdata(vid);

The variable time is a vector that contains the time each frame was logged,
measured in seconds, relative to the execution of the first trigger. Check the
first value in the time vector. It should reflect the duration of the delay
before data logging started.

time

time =

 4.9987
 5.1587
 5.3188
 5.4465
 5.6065
 5.7665
 5.8945
 6.0544
 6.2143
 6.3424

5 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
2

6

Using Events and
Callbacks

You can enhance the power and flexibility of your image acquisition application by using event
callbacks. An event is a specific occurrence that can happen while an image acquisition object is
running. The toolbox defines a set of events that include starting, stopping, or acquiring frames of
data.

When a particular event occurs, the toolbox can execute a function that you specify. This is called a
callback. Certain events can result in one or more callbacks. You can use callbacks to perform
processing tasks while your image acquisition object is running. For example, you can display a
message, analyze data, or perform other tasks. Callbacks are controlled through video input object
properties. Each event type has an associated property. You specify the function that you want
executed as the value of the property.

Example: Using the Default
Callback Function (p. 6-2)

Introduces events and callbacks by showing a simple example

Event Types (p. 6-4) Defines all the event types supported by the toolbox

Retrieving Event
Information (p. 6-6)

Describes the information generated with each event and describes
how to access it

Creating and Executing
Callback Functions (p. 6-11)

Describes how to write a callback function and associate it with an
event callback

6 Using Events and Callbacks

6-2
Example: Using the Default Callback Function
To illustrate how to use callbacks, this section presents a simple example that
creates an image acquisition object and associates a callback function with the
start event, trigger event, and stop event. For information about all the event
callbacks supported by the toolbox, see “Event Types” on page 6-4.

The example uses the default callback function provided with the toolbox,
imaqcallback. The default callback function displays the name of the object
along with information about the type of event that occurred and when it
occurred. To learn how to create your own callback functions, see “Creating and
Executing Callback Functions” on page 6-11.

This example illustrates how to use the default callback function.

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Configure properties — Set the values of three callback properties. The
example uses the default callback function imaqcallback.

set(vid,'StartFcn',@imaqcallback)
set(vid,'TriggerFcn',@imaqcallback)
set(vid,'StopFcn',@imaqcallback)

For this example, specify the amount of data to log.

set(vid, 'FramesPerTrigger',100);

3 Start the image acquisition object — Start the image acquisition object.
The object executes an immediate trigger, acquires 100 frames of data, and
then stops. With the three callback functions enabled, the object outputs
information about each event as it occurs.

Example: Using the Default Callback Function
start(vid)
Start event occurred at 14:38:46 for video input object: M_RS170-matrox-1.
Trigger event occurred at 14:38:46 for video input object: M_RS170-matrox-1.
Stop event occurred at 14:38:49 for video input object: M_RS170-matrox-1.

4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
6-3

6 Using Events and Callbacks

6-4
Event Types
The Image Acquisition Toolbox supports several different types of events. Each
event type has an associated video input object property that you can use to
specify the function that executes when the event occurs.

This table lists the supported event types, the name of the video input object
property associated with the event, and a brief description of the event. For
detailed information about these callback properties, see the property
reference information for the property.

The toolbox generates a specific set of information for each event and stores it
in an event structure. To learn more about the contents of these event
structures and how to retrieve this information, see “Retrieving Event
Information” on page 6-6.

Events and Callback Function Properties

Event Callback Property Description

Error ErrorFcn The toolbox generates an error event when a run-time
error occurs, such as a hardware error or timeout.
Run-time errors do not include configuration errors such
as setting an invalid property value.

When an error event occurs, the toolbox executes the
function specified by the ErrorFcn property. By default,
the toolbox executes the default callback function for this
event, imaqcallback, which displays the error message
at the MATLAB command line.

Frames
Acquired

FramesAcquiredFcn The toolbox generates a frames acquired event when a
specified number of frames have been acquired. You use
the FramesAcquiredFcnCount property to specify this
number.

When a frames acquired event occurs, the toolbox
executes the function specified by the
FramesAcquiredFcn property.

Event Types
Start StartFcn The toolbox generates a start event when an object is
started. You use the start function to start an object.

Note: If an error occurs in the start callback function, the
object never starts.

When a start event occurs, the toolbox executes the
function specified by the StartFcn property.

Stop StopFcn The toolbox generates a stop event when the object stops
running. An object stops running when the stop function
is called, the specified number of frames is acquired, or a
run-time error occurs.

When a stop event occurs, the toolbox executes the
function specified by the StopFcn property.

Timer TimerFcn The toolbox generates a timer event when a specified
amount of time expires. Time is measured relative to
when the object starts running. You use the TimerPeriod
property to specify the amount of time.

Note: Some timer events might not execute if your
system is significantly slowed or if the TimerPeriod is set
too small.

When a timer event occurs, the toolbox executes the
function specified by the TimerFcn property.

Trigger TriggerFcn The toolbox generates a trigger event when a trigger
executes. The video input object executes immediate
triggers. You execute manual triggers by calling the
trigger function. The image acquisition device executes
hardware triggers when a specified condition is met.

When a trigger event occurs, the toolbox executes the
function specified by the TriggerFcn property.

Events and Callback Function Properties (Continued)

Event Callback Property Description
6-5

6 Using Events and Callbacks

6-6
Retrieving Event Information
Each event has associated with it a set of information, generated by the toolbox
and stored in an event structure. This information includes the event type, the
time the event occurred, and other event-specific information. While a video
input object is running, the toolbox records event information in the object’s
EventLog property. You can also access the event structure associated with an
event in a callback function.

This section

• Defines the information in an event structure for all event types

• Describes how to retrieve information from the EventLog property

For information about accessing event information in a callback function, see
“Creating and Executing Callback Functions” on page 6-11.

Event Structures
An event structure contains two fields: Type and Data. For example, this is an
event structure for a trigger event:

Type: 'Trigger'
Data: [1x1 struct]

The Type field is a text string that specifies the event type. For a trigger event,
this field contains the text string 'Trigger'.

The Data field is a structure that contains information about the event. The
composition of this structure varies depending on which type of event occurred.
For information about the information associated with specific events, see the
following sections:

• “Data Fields for Start, Stop, Frames Acquired, and Trigger Events” on
page 6-7

• “Data Fields for Error Events” on page 6-7

• “Data Fields for Timer Events” on page 6-8

Retrieving Event Information
Data Fields for Start, Stop, Frames Acquired, and Trigger Events
For start, stop, frames acquired, and trigger events, the Data structure
contains these fields.

Data Fields for Error Events
For error events, the Data structure contains these fields.

Field Name Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage.
You can specify this value using the imaqmem
function.

FrameMemoryUsed Amount of frame memory that is currently in use

FrameNumber Frame number relative to when the object was
started

RelativeFrame Frame number relative to the execution of a
trigger

TriggerIndex Trigger the event is associated with. For example,
upon start, the associated trigger is 0. Upon stop,
it is equivalent to the TriggersExecuted
property.

Field Name Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage.
You can specify this value using the imaqmem
function.
6-7

6 Using Events and Callbacks

6-8
Data Fields for Timer Events
For timer events, the Data structure contains these fields.

Example: Accessing Data in the Event Log
While a video input object is running, the toolbox stores event information in
the object’s EventLog property. The value of this property is an array of event
structures. Each structure represents one event. For detailed information
about the composition of an event structure for each type of event, see “Event
Structures” on page 6-6.

The toolbox adds event structures to the EventLog array in the order in which
the events occur. The first event structure reflects the first event recorded, the
second event structure reflects the second event recorded, and so on.

FrameMemoryUsed Amount of frame memory that is currently in
use

Message Text message associated with the error

MessageID MATLAB message identifier associated with
the error

Field Name Description

AbsTime Absolute time the event occurred, returned in
MATLAB clock format

[year month day hour minute seconds]

FrameMemoryLimit Amount of memory allotted for frame storage.
You can specify this value using the imaqmem
function.

FrameMemoryUsed Amount of frame memory that is currently in
use

Field Name Description

Retrieving Event Information
Note Only start, stop, error, and trigger events are recorded in the EventLog
property. Frames-acquired events and timer events are not included in the
EventLog. Event structures for these events (and all the other events) are
available to callback functions. For more information, see “Creating and
Executing Callback Functions” on page 6-11.

To illustrate the event log, this example creates a video input object, runs it,
and then examines the object’s EventLog property:

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Start the image acquisition object — Start the image acquisition object.
By default, the object executes an immediate trigger, acquires 10 frames of
data, and then stops.

start(vid)

3 View the event log — Access the EventLog property of the video input
object. The execution of the video input object generated three events: start,
trigger, and stop. Thus the value of the EventLog property is a 1x3 array of
event structures.

events = vid.EventLog
events =

1x3 struct array with fields:
 Type
 Data

To list the events that are recorded in the EventLog property, examine the
contents of the Type field.
6-9

6 Using Events and Callbacks

6-1
{events.Type}
ans =
 'Start' 'Trigger' 'Stop'

To get information about a particular event, access the Data field in that
event structure. The example retrieves information about the trigger event.

trigdata = events(2).Data

trigdata =

 AbsTime: [2002 12 13 15 23 45.9700]
 FrameMemoryLimit: 139427840
 FrameMemoryUsed: 0
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 1

4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
0

Creating and Executing Callback Functions
Creating and Executing Callback Functions
The power of using event callbacks is the processing that you can perform in
response to events. You decide which events you want to associate callbacks
with and the functions these callbacks execute.

This section

• Describes how to create a callback function

• Describes how to specify the function as the value of a callback property

• Provides two examples of using event callbacks:

- Shows how to use callbacks to view a sample frame from the frames being
acquired

- Uses callback to implement a simple memory monitoring function

Note Callback function execution might be delayed if the callback involves a
CPU-intensive task such as updating a figure.

Creating Callback Functions
M-file callback functions require at least two input arguments:

• The image acquisition object

• The event structure associated with the event

The function header for this callback function illustrates this basic syntax.

function mycallback(obj,event)

The first argument, obj, is the image acquisition object itself. Because the
object is available, you can use in your callback function any of the toolbox
functions, such as getdata, that require the object as an argument. You can
also access all object properties.

The second argument, event, is the event structure associated with the event.
This event information pertains only to the event that caused the callback
function to execute. For a complete list of supported event types and their
associated event structures, see “Event Structures” on page 6-6.
6-11

6 Using Events and Callbacks

6-1
In addition to these two required input arguments, you can also specify
additional, application-specific arguments for your callback function.

Note To receive the object and event arguments, and any additional
arguments, you must use a cell array when specifying the name of the
function as the value of a callback property. For more information, see
“Specifying Callback Functions” on page 6-13.

Example: Writing a Callback Function
To illustrate, this example implements a callback function for a
frames-acquired event. This callback function enables you to monitor the
frames being acquired by viewing a sample frame periodically.

To implement this function, the callback function acquires a single frame of
data and displays the acquired frame in a MATLAB figure window. The
function also accesses the event structure passed as an argument to display the
timestamp of the frame being displayed. The drawnow command in the callback
function forces MATLAB to update the display.

function display_frame(obj,event)

sample_frame = peekdata(obj,1);

imagesc(sample_frame);

drawnow; % force an update of the figure window

abstime = event.Data.AbsTime;

t = fix(abstime);

sprintf('%s %d:%d:%d','timestamp', t(4),t(5),t(6))

To see how this function can be used as a callback, see “Example: Viewing a
Sample Frame” on page 6-15.
2

Creating and Executing Callback Functions
Specifying Callback Functions
You associate a callback function with a specific event by setting the value of
the event’s callback property. The video input object supports callback
properties for all types of events.

You can specify the callback function as the value of the property in any of
three ways:

• Text string

• Cell array

• Function handle

The following sections provide more information about each of these options.

Note To access the object or event structure passed to the callback function,
you must specify the function as a cell array or as a function handle.

Using a Text String to Specify Callback Functions
You can specify the callback function as a string. For example, this code
specifies the callback function mycallback as the value of the start event
callback property StartFcn for the video input object vid.

vid.StartFcn = 'mycallback';

In this case, the callback is evaluated in the MATLAB workspace.

Using a Cell Array to Specify Callback Functions
You can specify the callback function as a text string inside a cell array.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = {'mycallback'};

To specify additional parameters, include them as additional elements in the
cell array.

time = datestr(now,0);
vid.StartFcn = {'mycallback',time};
6-13

6 Using Events and Callbacks

6-1
The first two arguments passed to the callback function are still the video input
object (obj) and the event structure (event). Additional arguments follow these
two arguments.

Using Function Handles to Specify Callback Functions
You can specify the callback function as a function handle.

For example, this code specifies the callback function mycallback as the value
of the start event callback property StartFcn for the video input object vid.

vid.StartFcn = @mycallback;

To specify additional parameters, include the function handle and the
parameters as elements in the cell array.

time = datestr(now,0);
vid.StartFcn = {@mycallback,time};

If you are executing a local callback function from within an M-file, you must
specify the callback as a function handle.

Specifying a Toolbox Function as a Callback
In addition to specifying callback functions of your own creation, you can also
specify the start, stop, or trigger toolbox functions as callbacks. For example,
this code sets the value of the stop event callback to the Image Acquisition
Toolbox start function.

vid.StopFcn = @start;

Disabling Callbacks
If an error occurs in the execution of the callback function, the toolbox disables
the callback and displays a message similar to the following.

start(vid)
??? Error using ==> frames_cb
Too many input arguments.

Warning: The FramesAcquiredFcn callback is being disabled.

To enable a callback that has been disabled, set the value of the property
associated with the callback or restart the object.
4

Creating and Executing Callback Functions
Example: Viewing a Sample Frame
This example creates a video input object and sets the frames acquired event
callback function property to the display_frame function, created in
“Example: Writing a Callback Function” on page 6-12.

The example sets the TriggerRepeat property of the object to 4 so that 50
frames are acquired. When run, the example displays a sample frame from the
acquired data every time five frames have been acquired.

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.

vid = videoinput('matrox',1);

2 Configure property values — This example sets the FramesPerTrigger
value to 30 and the TriggerRepeat property to 4. The example also specifies
as the value of the FramesAcquiredFcn callback the event callback function
display_frame, created in “Example: Writing a Callback Function” on
page 6-12. The object will execute the FramesAcquiredFcn every five frames,
as specified by the value of the FramesAcquiredFcnCount property.

set(vid,'FramesPerTrigger',30);
set(vid,'TriggerRepeat',4);
set(vid,'FramesAcquiredFcnCount',5);
set(vid,'FramesAcquiredFcn',{'display_frame'});

3 Acquire data — Start the video input object. Every time five frames are
acquired, the object executes the display_frame callback function. This
callback function displays the most recently acquired frame logged to the
memory buffer.

start(vid)

4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
6-15

6 Using Events and Callbacks

6-1
Example: Monitoring Memory Usage
This example creates a callback function for a timer event that displays the
toolbox’s current memory usage and stops the acquisition when the available
memory for frame storage falls below a specified amount.

Creating the Memory Monitor Callback Function
This callback function implements a simple memory usage monitoring
function. The callback function uses the imaqmem function to retrieve two
memory usage statistics, FrameMemoryLimit and FrameMemoryUsed, and then
calculates the amount of memory that is currently left for allocating frames.
When the amount of memory available falls below a specified value, the
function outputs a message and stops the object.

function mem_mon(obj,event)

out = imaqmem;

mem_left = out.FrameMemoryLimit - out.FrameMemoryUsed;

msg = 'Memory left for frames';
msg2 = 'Memory load';
low_limit = 2000000;

if(mem_left > low_limit)
 sprintf('%s: %d \n%s: %d',msg, mem_left,msg2, out.MemoryLoad)
else
 disp('Memory available for frames getting low.');

disp('Stopping acquisition.')
stop(obj);

end

Running the Example
The example acquires frames until the amount of memory left for frame
storage reaches a lower limit specified in the callback function.

1 Create an image acquisition object — This example creates a video input
object for a Matrox image acquisition device. To run this example on your
system, use the imaqhwinfo function to get the object constructor for your
image acquisition device and substitute that syntax for the following code.
6

Creating and Executing Callback Functions
vid = videoinput('matrox',1);

2 Configure property values — This example sets up a continuous
acquisition by setting the FramesPerTrigger value to Inf. The example also
specifies the timer event callback function mem_mon, created in “Creating the
Memory Monitor Callback Function” on page 6-16, as the value of the
TimerFcn callback. The object will execute the TimerFcn every five seconds,
as specified by the value of the TimerPeriod property.

set(vid,'FramesPerTrigger',Inf);
set(vid,'TimerPeriod',5);
set(vid,'TimerFcn',{'mem_mon'});

3 Acquire data — Start the video input object. Every 5 seconds, the object
executes the callback function associated with the timer event. This function
outputs the current memory available for frame storage and the memory
load statistic. When the amount of memory reaches the specified lower limit,
the callback function stops the acquisition.

start(vid)
ans =

ans =

Memory left for frames: 27791360
Memory load: 88

ans =

Memory left for frames: 26316800
Memory load: 88

ans =

Memory left for frames: 24842240
Memory load: 89

.

.

.

6-17

6 Using Events and Callbacks

6-1
Memory left for frames: 2969600
Memory load: 97

Memory available for frames getting low.
Stopping acquisition.

4 Clean up — Always remove image acquisition objects from memory, and the
variables that reference them, when you no longer need them.

delete(vid)
clear vid
8

7

Function Reference

This chapter provides descriptions of all toolbox functions that you can use directly.

Getting Command Line
Function Help (p. 7-2)

Describes how to get help for toolbox functions at the command line

Functions — By Category
(p. 7-3)

Contains a series of tables that provide brief descriptions of Image
Acquisition Toolbox functions, arranged by category, followed by
individual reference pages for each function

7 Function Reference

7-2
Getting Command Line Function Help
To get command-line function help, you can use the MATLAB help function.
For example, to get help for the getsnapshot function, type

help getsnapshot

However, the Image Acquisition Toolbox provides “overloaded” versions of
several MATLAB functions. That is, it provides toolbox-specific
implementations of these functions using the same function name.

For example, the Image Acquisition Toolbox provides an overloaded version of
the delete function. If you type

help delete

you get help for the MATLAB version of this function. You can determine if a
function is overloaded by examining the last section of the help. For delete, the
help contains the following overloaded versions (not all are shown).

Overloaded methods
help char/delete.m
help scribehandle/delete.m
help scribehgobj/delete.m
.
.
.
help imaqdevice/delete.m

To obtain help on the Image Acquisition Toolbox version of this function, type

help imaqdevice/delete

To avoid having to specify which overloaded version you want to view, use the
imaqhelp function.

imaqhelp delete

You can also use this function to get help on image acquisition object
properties. For more information on overloaded functions and class directories,
refer to “MATLAB Classes and Objects” in the Help browser.

Functions — By Category
Functions — By Category
This section provides brief descriptions of all the functions in the Image
Acquisition Toolbox. The functions are listed in tables in the following broad
categories.

• General functions

• Trigger functions

• Data functions

• Tools

General Object Functions
Video input objects have one or more video source objects associated with them.
In this table, functions that work on both types of object use the phrase “image
acquisition object” to refer to both types of object.

clear Clear image acquisition object from the workspace

delete Remove video input object from memory

disp Display summary information about an image
acquisition object

get Retrieve current settings of all image acquisition
object properties

getselectedsource Retrieve the currently selected video source object,
associated with the video input object

imaqfind Find all image acquisition objects in memory

isvalid Determine if image acquisition object is a valid
object

load Load image acquisition objects into the workspace

save Save image acquisition objects to a MAT-file

set Retrieve a list of all settable properties or set the
values of specific image acquisition object properties

start Start a video input object
7-3

7 Function Reference

7-4
Trigger Functions

Data Functions

Tools

stop Stop a video input object

videoinput Create a video input object

wait Block until a video input object stops running

trigger Initiate logging of image data

triggerconfig Set the values of TriggerType, TriggerCondition, and
TriggerSource properties

triggerinfo Retrieve all valid combinations of values for the
TriggerType, TriggerCondition, and TriggerSource
properties

flushdata Delete data stored in the memory buffer

getdata Bring data from the memory buffer into the MATLAB
workspace, deleting data from the memory buffer as it is
moved

getsnapshot Bring a single frame of data into the MATLAB workspace

peekdata Bring data from the memory buffer into the MATLAB
workspace without deleting it from the memory buffer

closepreview Close a preview window or all open preview windows

imaqhelp Return image acquisition object function and property
help

imaqhwinfo Return information about image acquisition hardware on
the system

Functions — By Category
imaqmem Limit or display memory already in use by the Image
Acquisition Toolbox

imaqmontage Display a sequence of image frames as a montage

imaqreset Return toolbox to its original state

preview Open a live display of the current image acquisition
device’s scene

propinfo Return image acquisition object property information
7-5

clear
7clearPurpose Clear an image acquisition object from the workspace

Syntax clear obj

Description clear obj removes the image acquisition object obj from the MATLAB
workspace. obj can be either a video input object or a video source object.

Note If you clear a video input object that is running (the Running property is
set to 'on'), the object continues executing.

You can restore cleared objects to the MATLAB workspace with the imaqfind
function.

To remove an image acquisition object from memory, use the delete function.

See Also delete, imaqfind, isvalid
7-6

closepreview
7closepreviewPurpose Close image preview windows

Syntax closepreview(obj)
closepreview

Description closepreview(obj) closes the image preview window associated with image
acquisition object obj.

closepreview closes all image preview windows for all image acquisition
objects.

See Also preview, videoinput
7-7

delete
7deletePurpose Remove image acquisition object from memory

Syntax delete(obj)

Description delete(obj) removes obj, an image acquisition object or array of image
acquisition objects, from memory. Use delete to free memory at the end of an
image acquisition session.

If obj is an array of image acquisition objects and one of the objects cannot be
deleted, the delete function deletes the objects that can be deleted and returns
a warning.

When obj is deleted, it becomes invalid and cannot be reused. Use the clear
command to remove invalid image acquisition objects from the MATLAB
workspace.

If multiple references to an image acquisition object exist in the workspace,
deleting the image acquisition object invalidates the remaining references. Use
the clear command to delete the remaining references to the object from the
workspace.

If the image acquisition object obj is running or being previewed, the delete
function stops the object and closes the preview window before deleting it.

Example vid = videoinput('winvideo', 1);
preview(vid);
delete(vid);

See Also imaqfind, isvalid, videoinput
7-8

disp
7dispPurpose Display method for image acquisition objects

Syntax obj
disp(obj)

Description obj or disp(obj) displays summary information for image acquisition object
obj.

If obj is an array of image acquisition objects, disp outputs a table of summary
information about the image acquisition objects in the array.

In addition to the syntax shown above, you can display summary information
for obj by excluding the semicolon when

• Creating a image acquisition object, using the videoinput function

• Configuring property values using the dot notation

Example This example illustrates the summary display of a video input object.

This example shows the summary information displayed for an array of video
input objects.

vid = videoinput('winvideo')

Summary of Video Input Object Using 'IBM PC Camera'.

 Acquisition Source(s): input1 is available.

 Acquisition Parameters: 'input1' is the current selected source.
 10 frames per trigger using the selected source.
 'RGB555_128x96' video data to be logged upon START.
 Grabbing first of every 1 frame(s).
 Log data to 'memory' on trigger.

 Trigger Parameters: 1 'immediate' trigger(s) on START.

 Status: Waiting for START.
 0 frames acquired since starting.
 0 frames available for GETDATA.
7-9

disp
vid2 = videoinput('winvideo');

[vid vid2]

 Video Input Object Array:

 Index: Type: Name:
 1 videoinput RGB555_128x96-winvideo-1
 2 videoinput RGB555_128x96-winvideo-1

See Also videoinput
7-10

flushdata
7flushdataPurpose Remove data from the memory buffer used to store acquired image frames

Syntax flushdata(obj)
flushdata(obj,mode)

Description flushdata(obj) removes all the data from the memory buffer used to store
acquired image frames. obj can be a single video input object or an array of
video input objects.

flushdata(obj,mode) removes all the data from the memory buffer used to
store acquired image frames, where mode can have either of the following
values:

See Also imaqhelp, getdata, peekdata, propinfo, videoinput

mode Description

'all' Removes all the data from the memory buffer and
sets the FramesAvailable property to 0 for the video
input object obj. This is the default mode when none
is specified, flushdata(obj).

'triggers' Removes the data acquired during the oldest trigger
executed from the memory buffer. TriggerRepeat
must be greater than 0 and FramesPerTrigger must
not be set to inf.
7-11

get
7getPurpose Display or get image acquisition object properties

Syntax get(obj)
V = get(obj)
V = get(obj,'PropertyName')

Description get(obj) displays all property names and their current values for image
acquisition object obj.

V = get(obj) returns a structure, V, in which each field name is the name of a
property of obj and each field contains the value of that property.

V = get(obj,'PropertyName') returns the value, V, of the property specified
in PropertyName for image acquisition object obj.

If PropertyName is a 1-by-N or N-by-1 cell array of strings containing property
names, V is a 1-by-N cell array of values. If obj is a vector of image acquisition
objects, V is an M-by-N cell array of property values where M is equal to the
length of obj and N is equal to the number of properties specified.

Example vid = videoinput('matrox', 1);

get(vid, {'FramesPerTrigger','FramesAcquired'})

out = get(vid, 'LoggingMode')

get(vid);

See Also set, videoinput
7-12

getdata
7getdataPurpose Return acquired image frames to MATLAB workspace

Syntax data = getdata(obj)
data = getdata(obj, n)
data = getdata(obj, n, type)
data = getdata(obj, n, type, format)
[data, time] = getdata(...)
[data, time, metadata] = getdata(...)

Description data = getdata(obj) returns data, which contains the number of frames
specified in the FramesPerTrigger property of the video input object obj. obj
must be a 1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

data is returned to the MATLAB workspace in its native data type using the
color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the returned
data. Use imaqmontage to view multiple frames at once.

data = getdata(obj,n) returns n frames of data associated with the video
input object obj.

data = getdata(obj,n,type) returns n frames of data associated with the
video input object obj, where type specifies the data type used to store the
returned data. type can be any of these strings:

H Image height, as specified in the object’s ROIPosition property

W Image width, as specified in the object’s ROIPosition property

B Number of bands, as specified in the NumberOfBands property.

F The number of frames returned

Type String Data Type

'uint8' Unsigned 8-bit integer

'uint16' Unsigned 16-bit integer
7-13

getdata
If type is not specified, 'native' is used as the default. If there is no MATLAB
data type that matches the object's native data type, getdata chooses a
MATLAB data type that preserves numerical accuracy. For example, the
components of 12-bit RGB color data would each be returned as uint8 data.

data = getdata(obj,n,type,format) returns n frames of data associated
with the video input object obj, where format specifies the MATLAB format of
data. format can be either of these strings:

[data,time] = getdata(...) returns time, an F-by-1 matrix, where F is the
number of frames returned in data. Each element of time indicates the relative
time, in seconds, of the corresponding frame in data, relative to the first
trigger.

time = 0 is defined as the point at which data logging begins. When data
logging begins, the object's Logging property is set to 'On'. time is measured
continuously with respect to 0 until the acquisition stops. When the acquisition
stops, the object's Running property is set to 'Off'.

[data, time, metadata] = getdata(...) returns metadata, an F-by-1 array
of structures, where F is the number of frames returned in data. Each

'uint32' Unsigned 32-bit integer

'double' Double precision

'native' Uses native data type. This is the default.

Format String Description

'numeric' Returns data as an H-by-W-by-B-by-F array

'cell' Returns data as an F-by-1 cell array of H-by-W-by-B
matrices

Type String Data Type
7-14

getdata
structure contains information about the corresponding frame in data. The
metadata structure contains these fields:

getdata is a blocking function that returns execution control to the MATLAB
workspace after the requested number of frames becomes available within the
time period specified by the object’s Timeout property. The object’s
FramesAvailable property is automatically reduced by the number of frames
returned by getdata. If the requested number of frames is greater than the
frames to be acquired, getdata returns an error.

It is possible to issue a Ctrl-C while getdata is blocking. This does not stop the
acquisition but does return control to MATLAB.

Example Construct a video input object associated with a Matrox device at ID 1.

obj = videoinput('matrox', 1);

Initiate an acquisition and access the logged data.

start(obj);
data = getdata(obj);

Display each image frame acquired.

imaqmontage(data);

Metadata Field Description

'AbsTime' Absolute time the frame was acquired,
expressed as a time vector

'FrameNumber' Number identifying the nth frame since the
start command was issued

'RelativeFrame' Number identifying the nth frame relative to
the start of a trigger

'TriggerIndex' Number of the trigger in which this frame was
acquired
7-15

getdata
Remove the video input object from memory.

delete(obj);

See Also getsnapshot, imaqhelp, imaqmontage, peekdata, propinfo
7-16

getselectedsource
7getselectedsourcePurpose Return the currently selected video source object

Syntax src = getselectedsource(obj)

Description src = getselectedsource(obj) searches all the video source objects
associated with the video input object obj and returns the video source object,
src, that has the Selected property value set to 'on'.

To select a source for acquisition, use the SelectedSourceName property of the
video input object.

obj must be a 1-by-1 video input object.

See Also imaqhelp, get, videoinput
7-17

getsnapshot
7getsnapshotPurpose Immediately return a single image frame

Syntax frame = getsnapshot(obj)

Description frame = getsnapshot(obj) immediately returns one single image frame,
frame, from the video input object obj. The frame of data returned is
independent of the video input object FramesPerTrigger property and has no
effect on the value of the FramesAvailable or FramesAcquired property.

The object obj must be a 1-by-1 video input object.

frame is returned as an H-by-W-by-B matrix where

frame is returned to the MATLAB workspace in its native data type using the
color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc function to view the returned data.

Note If obj is running but not logging, and has been configured with a
hardware trigger, a timeout error will occur.

To interrupt the getsnapshot function and return control to the MATLAB
command line, issue the ^C (Control-C) command.

Example Create a video input object.

obj = videoinput('matrox', 1);

Acquire and display a single frame of data.

frame = getsnapshot(obj);
image(frame);

H Image height, as specified in the ROIPosition property

W Image width, as specified in the ROIPosition property

B Number of bands associated with obj, as specified in the
NumberOfBands property
7-18

getsnapshot
Remove the video input object from memory.

delete(obj);

See Also getdata, imaqhelp, peekdata
7-19

imaqfind
7imaqfindPurpose Find image acquisition objects

Syntax imaqfind
out = imaqfind
out = imaqfind('P1', V1, 'P2', V2,...)
out = imaqfind(S)
out = imaqfind(obj, 'P1', V1, 'P2', V2,...)

Description imaqfind returns an array containing all the video input objects that exist in
memory. If only a single video input object exists in memory, imaqfind displays
a detailed summary of that object.

out = imaqfind returns an array, out, of all the video input objects that exist
in memory.

out = imaqfind('P1', V1, 'P2', V2,...) returns a cell array, out, of
image acquisition objects whose property names and property values match
those passed as parameter/value pairs P1, V1, P2, V2. Parameter/value pairs
can be specified as a cell array.

out = imaqfind(S) returns a cell array, out, of image acquisition objects
whose property values match those defined in the structure S. The field names
of S are image acquisition object property names and the field values are the
requested property values.

out = imaqfind(obj, 'P1', V1, 'P2', V2,...) restricts the search for
matching parameter/value pairs to the image acquisition objects listed in obj.
obj can be an array of image acquisition objects.

Note Parameter name/parameter value string pairs, structures, and
parameter name/parameter value cell array pairs can be used in the same call
to imaqfind.

When searching for properties with specific values, imaqfind performs
case-sensitive searches. For example, if the value of an object's Name property
is 'MyObject', imaqfind does not find a match if you specify 'myobject'. Use
the get function to determine the exact spelling of a property value. Note,
7-20

imaqfind
however, that searches for properties that have an enumerated list of possible
values are not case sensitive. For example, imaqfind will find an object with a
Running property value of 'Off' or 'off'.

Example This example uses imaqfind to find image acquisition objects with the specified
property values.

obj1 = videoinput('matrox', 1, 'Tag', 'FrameGrabber');

obj2 = videoinput('winvideo', 1, 'Tag', 'Webcam');

out1 = imaqfind('Type', 'videoinput')

out2 = imaqfind('Tag', 'FrameGrabber')

out3 = imaqfind({'Type', 'Tag'}, {'videoinput', 'Webcam'})

See Also get, videoinput
7-21

imaqhelp
7imaqhelpPurpose Return image acquisition object function and property help

Syntax imaqhelp
imaqhelp('name')
imaqhelp(obj)
imaqhelp(obj,'name')
out = imaqhelp(...)

Description imaqhelp provides a complete listing of image acquisition object functions.

imaqhelp('name') provides online help for the function or property name.

imaqhelp(obj) displays a listing of functions and properties for the image
acquisition object obj along with the online help for the object's constructor.
obj must be a 1-by-1 image acquisition object.

imaqhelp(obj,'name') displays the help for function or property name for the
image acquisition object obj.

If name is a device-specific property name, obj must be provided.

out = imaqhelp(...) returns the help text in string out.

When property help is displayed, the names in the “See also” section that
contain all uppercase letters are function names. The names that contain a
mixture of upper- and lowercase letters are property names.

When function help is displayed, the “See also” section contains only function
names.

Example Getting general function and property help.

imaqhelp('videoinput')

out = imaqhelp('videoinput.m');

imaqhelp set

imaqhelp LoggingMode
7-22

imaqhelp
Getting property help with device-specific information.

vid = videoinput('dt', 1);

src = getselectedsource(vid);

imaqhelp(vid, 'TriggerType')

imaqhelp(src, 'FrameRate')

See Also propinfo
7-23

imaqhwinfo
7imaqhwinfoPurpose Return information about available image acquisition hardware

Syntax out = imaqhwinfo
out = imaqhwinfo('adaptorname')
out = imaqhwinfo('adaptorname','field')
out = imaqhwinfo('adaptorname',deviceID)
out = imaqhwinfo(obj)
out = imaqhwinfo(obj,'field')

Description out = imaqhwinfo returns a structure, out, that contains information about
the image acquisition adaptors available on the system. An adaptor is the
interface between MATLAB and the image acquisition devices connected to the
system. The adaptor's main purpose is to pass information between MATLAB
and an image acquisition device via its driver.

out = imaqhwinfo('adaptorname') returns a structure out that contains
information about the specified adaptor. The information returned includes
adaptor version and available hardware for the specified adaptor. To get a list
of valid adaptor names, use the imaqhwinfo syntax.

out = imaqhwinfo('adaptorname','field') returns the value of the
specified field, field, for the specified adaptor. The argument field can be a
single string or a cell array of strings. If field is a cell array, out is a 1-by-N
cell array where N is the length of field. To get a list of valid field names, use
the imaqhwinfo('adaptorname') syntax.

out = imaqhwinfo('adaptorname', deviceID) returns information for the
device identified by the numerical device ID deviceID. The deviceID can be a
scalar or a vector. If deviceID is a vector, out is a 1-by-N structure array where
N is the length of deviceID.

out = imaqhwinfo(obj) returns a structure out that contains information
about the specified image acquisition object obj. If obj is an array of device
objects, then out is a 1-by-n cell array of structures where n is the length of obj.
7-24

imaqhwinfo
out = imaqhwinfo(obj,'field') returns the hardware information for the
specified field, field, for the device object obj. field can be a single field name
or a cell array of field names. out is an m-by-n cell array where m is the length
of obj and n is the length of field. You can return a list of valid field names
with the imaqhwinfo(obj) syntax.

Note After you call imaqhwinfo once, hardware information is cached by the
toolbox. To force the toolbox to search for new hardware that might have been
installed while MATLAB was running, use imaqreset.

Example This example returns information about all the adaptors available on the
system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '6.5.1 (R13+)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.0 (R13+)

This example returns information about all the devices accessible through a
particular adaptor.

info = imaqhwinfo('winvideo')
info =

AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '1.0 (R13+)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]
7-25

imaqhwinfo
This example returns information about a specific device accessible through a
particular adaptor. You identify the device by its device ID.

dev_info = imaqhwinfo('winvideo', 1)

dev_info =

 DefaultFormat: 'RGB555_128x96'
 DeviceFileSupported: 0
 DeviceName: 'IBM PC Camera'
 DeviceID: 1
 ObjectConstructor: 'videoinput('winvideo', 1)'
 SupportedFormats: {1x34 cell}

This example gets information about the device associated with a particular
video input object.

obj = videoinput('winvideo', 1);

obj_info = imaqhwinfo(obj)

obj_info =

AdaptorName: 'winvideo'
 DeviceName: 'IBM PC Camera'
 MaxHeight: 96
 MaxWidth: 128
 TotalSources: 1
 VendorDriverDescription: 'Windows WDM Compatible Driver'
 VendorDriverVersion: 'DirectX 9.0'

This example returns the value of a particular field in the device information
associated with a particular video input object.

field_info = imaqhwinfo(vid,'adaptorname')

field_info =

winvideo

See Also imaqhelp, imaqreset
7-26

imaqmem
7imaqmemPurpose Limit memory or display memory usage for the Image Acquisition Toolbox

Syntax mem = imaqmem
imaqmem(limit)

Description mem = imaqmem returns a structure out containing the following fields:

Field Description

MemoryLoad Number between 0 and 100 that gives a general
idea of current memory utilization

TotalPhys Total number of bytes of physical memory

AvailPhys Number of bytes of physical memory currently
available

TotalPageFile Total number of bytes that can be stored in the
paging file

AvailPageFile Number of bytes available in the paging file

TotalVirtual Total number of bytes that can be described in the
user mode portion of the virtual address space

AvailVirtual Number of bytes of unreserved and uncommitted
memory in the user mode portion of the virtual
address space

FrameMemoryLimit Total number of bytes image acquisition frames
can occupy in memory

By default, the toolbox sets this limit to equal all
available physical memory at the time imaqmem is
first used or queried.

FrameMemoryUsed Number of bytes currently allocated by the Image
Acquisition Toolbox
7-27

imaqmem
imaqmem(limit) configures the frame memory limit, in bytes, for the Image
Acquisition Toolbox. value is used to determine the maximum amount of
memory the toolbox can use for logging image frames.

Note Configuring this limit does not remove any logged frames from the
image acquisition memory buffer. To remove frames from the buffer, you can
bring them into the MATLAB workspace, using the getdata function, or
remove them from memory, using the flushdata function.

 See Also flushdata, getdata, videoinput
7-28

imaqmontage
7imaqmontagePurpose Display a sequence of image frames as a montage

Syntax imaqmontage(frames)
imaqmontage(obj)
imaqmontage(...,CLIM)

Description imaqmontage(frames) displays a montage of image frames in a MATLAB
figure window using the imagesc function.

frames can be any data set returned by getdata, peekdata, or getsnapshot.

imaqmontage(obj) calls the getsnapshot function on video input object obj
and displays a single image frame in a MATLAB figure window using the
imagesc function. obj must be a 1-by-1 video input object.

imaqmontage(...,CLIM) displays a montage of image frames, where CLIM is a
two-element vector, [CLOW CHIGH], specifying the image scaling. Use CLIM to
specify a scaling value when overscaling the image data is a risk, for example,
when you are working with devices that provide data in a 12-bit format.

 See Also getdata, getsnapshot, imaqhelp, peekdata
7-29

imaqreset
7imaqresetPurpose Disconnect and delete all image acquisition objects

Syntax imaqreset

Description imaqreset deletes any image acquisition objects that exist in memory and
unloads all adaptors loaded by the toolbox. As a result, the image acquisition
hardware is reset.

imaqreset is the image acquisition command that returns MATLAB to the
known state of having no image acquisition objects and no loaded image
acquisition adaptors.

imaqreset can be used to force the toolbox to search for new hardware that
might have been installed while MATLAB was running.

See Also delete, videoinput
7-30

isvalid
7isvalidPurpose Determine if image acquisition object is associated with an image acquisition
device

Syntax out = isvalid(obj)

Description out = isvalid(obj) returns a logical array out that contains a 1 where the
elements of obj are image acquisition objects associated with hardware and a
0 where the elements of obj are image acquisition objects not associated with
hardware.

An object is an invalid image acquisition object when it is no longer associated
with any hardware. If this is the case, obj should be cleared from the
workspace.

See Also delete, imaqfind, videoinput
7-31

load
7loadPurpose Load an image acquisition object into the MATLAB workspace

Syntax load filename
load filename obj1 obj2 ...
S = load('filename','obj1','obj2',...)

Description load filename returns all variables from the MAT-file filename to the
MATLAB workspace.

load filename obj1 obj2 ... returns the specified image acquisition
objects (obj1, obj2, etc.) from the MAT-file filename to the MATLAB
workspace.

S = load('filename','obj1','obj2',...) returns the structure S with the
specified image acquisition objects (obj1, obj2, etc.) from the MAT-file
filename instead of directly loading the image acquisition objects into the
workspace. The field names in S match the names of the image acquisition
objects that were retrieved. If no objects are specified, then all variables
existing in the MAT-file are loaded.

Values for read-only properties are restored to their default values upon
loading. For example, the Running property is restored to 'off'. Use propinfo
to determine if a property is read only.

Examples obj = videoinput('winvideo', 1);
set(obj, 'SelectedSourceName', 'input1')
save fname obj
load fname
load('fname', 'obj');

See Also imaqhelp, propinfo, save
7-32

peekdata
7peekdataPurpose Return most recently acquired image data

Syntax data = peekdata(obj,frames)

Description data = peekdata(obj,frames) returns data containing the latest number of
frames specified by frames. If frames is greater than the number of frames
currently acquired, all available frames are returned with a warning message
stating that the requested number of frames was not available. obj must be a
1-by-1 video input object.

data is returned as an H-by-W-by-B-by-F matrix where

data is returned to the MATLAB workspace in its native data type using the
color space specified by the ReturnedColorSpace property.

You can use the MATLAB image or imagesc functions to view the returned
data. Use imaqmontage to view multiple frames at once.

peekdata is a nonblocking function that immediately returns image frames
and execution control to the MATLAB workspace. Not all requested data might
be returned.

Note peekdata provides a look at the data; it does not remove data from the
memory buffer. The object's FramesAvailable property value is not affected by
the number of frames returned by peekdata.

The behavior of peekdata depends on the settings of the Running and the
Logging properties.

H Image height, as specified in the object’s ROIPosition property

W Image width, as specified in the object’s ROIPosition property

B Number of color bands, as specified in the NumberOfBands property

F Number of frames returned
7-33

peekdata
The number of frames available to peekdata is determined by recalling the last
frame returned by a previous peekdata call, and the number of frames that
were acquired since then.

peekdata can be used only after the start command is issued and while the
object is running. peekdata can also be called once after obj has stopped
running.

See Also getdata, getsnapshot, imaqhelp, imaqmontage, propinfo, start

Running Logging Object State Result

On Off The object has been started
but is waiting for a trigger.
(TriggerType is set to
'manual' or 'hardware'). No
data has been acquired so
none is available.

peekdata returns a single frame of
data and issues a warning, if you
requested more than one frame.

On On The object has been started,
a trigger has executed, and
the object is actively
acquiring data.

peekdata returns the n most
recently acquired frames of data.
The frames are not removed from
the buffer.

Off Off The object has stopped
running because it acquired
the requested number of
frames or you called the stop
function.

peekdata can be called once to
return the n most recently
acquired frames of data, assuming
FramesAvailable is greater than
0. Otherwise, peekdata returns an
error. The frames returned are not
removed from the memory buffer.
7-34

preview
7previewPurpose Activate a live image preview window

Syntax preview(obj)

Description preview(obj) immediately activates a live image preview window for the
video input object obj. The size of the previewed images reflects the
ROIPosition property configuration. The preview window remains active until
it is closed with the closepreview function.

The behavior of the preview window depends on the object's current state and
trigger configuration.

While an object is stopped (Running = 'off'), the preview window shows a live
view of the image being acquired from the device, for all trigger types. The
image is updated to reflect changes made to configurations of object properties.
(The FrameGrabInterval property is ignored until a trigger occurs.)

When an object is started (Running = 'on'), the behavior of the preview
window depends on the trigger type. If the trigger type is set to immediate or
manual, the preview window continues to update the image displayed. If the
trigger type is set to hardware, the preview window stops updating the image
displayed until a trigger occurs.

While an object is logging (Logging = 'on'), the preview window might drop
some data frames, but this does not affect the frames logged to memory or disk.

If you delete obj with the delete function, any associated preview windows are
closed.

See Also closepreview, videoinput
7-35

propinfo
7propinfoPurpose Return property characteristics for image acquisition objects

Syntax out = propinfo(obj)
out = propinfo(obj,'PropertyName')

Description out = propinfo(obj) returns the structure out whose field names are the
names of all the properties supported by obj. obj must be a 1-by-1 image
acquisition object. The value of each field is a structure containing the fields
shown below.

out = propinfo(obj,'PropertyName') returns the structure out for the
property specified by PropertyName. If PropertyName is a cell array of strings,
propinfo returns a structure for each property, stored in a cell array.

Example Create the video input object vid.

vid = videoinput('winvideo',1);

Field Name Description

Type Data type of the property. Possible values are 'any',
'callback', 'double', 'string', and 'struct'

Constraint Type of constraint on the property value. Possible
values are 'bounded', 'callback', 'enum', and 'none'

ConstraintValue List of valid string values or a range of valid values

DefaultValue Default value for the property

ReadOnly Condition under which a property is read only:

• 'always'— Property cannot be configured.

• 'whileRunning'— Property cannot be configured
while Running is set to on.

• 'never'— Property can be configured at any time.

DeviceSpecific 1 if the property is device specific; otherwise, 0 (zero)
7-36

propinfo
Capture all property information for all properties.

out = propinfo(vid);

Access property information for a particular property.

out1 = propinfo(vid,'LoggingMode');

See Also imaqhelp
7-37

save
7savePurpose Save image acquisition objects to a MAT-file

Syntax save filename
save filename obj1 obj2 ...
save('filename','obj1','obj2',...)

Description save filename saves all variables in the MATLAB workspace to the MAT-file
filename. If filename does not include a file extension, save appends the .MAT
extension to the filename.

save filename obj1 obj2 ... saves the specified image acquisition objects
(obj1, obj2, etc.) to the MAT-file filename.

save('filename','obj1','obj2',...) is the functional form of the
command, where the file name and image acquisition objects must be specified
as strings. If no objects are specified, then all variables existing in the
MATLAB workspace are saved.

Note Any data associated with the image acquisition object is not stored in
the MAT-file. To save the data, bring it into the MATLAB workspace (using
the getdata function), and then save the variable to the MAT-file.

To return variables from the MAT-file to the MATLAB workspace, use the load
command. Values for read-only properties are restored to their default values
upon loading. For example, the Running property is restored to 'off'. Use the
propinfo function to determine if a property is read only.

Examples obj = videoinput('winvideo', 1);

set(obj, 'SelectedSourceName', 'input1')

save fname obj

set(obj, 'TriggerFcn', {'mycallback', 5});

save('fname1', 'obj')

See Also imaqhelp, load, propinfo
7-38

set
7setPurpose Configure or display image acquisition object properties

Syntax set(obj)
prop_struct = set(obj)
set(obj,'PropertyName')
prop_cell = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,S)
set(obj,PN,PV)

Description set(obj) displays property names and any enumerated values for all
configurable properties of image acquisition object obj. obj must be a single
image acquisition object.

prop_struct = set(obj) returns the property names and any enumerated
values for all configurable properties of image acquisition object obj. obj must
be a single image acquisition object. The return value prop_struct is a
structure whose field names are the property names of obj, and whose values
are cell arrays of possible property values or empty cell arrays if the property
does not have a finite set of possible string values.

set(obj,'PropertyName') displays the possible values for the specified
property, PropertyName, of image acquisition object obj. obj must be a single
image acquisition object.

prop_cell = set(obj,'PropertyName') returns the possible values for the
specified property, PropertyName, of image acquisition object obj. obj must be
a single image acquisition object. The returned array prop_cell is a cell array
of possible value strings or an empty cell array if the property does not have a
finite set of possible string values.

set(obj,'PropertyName',PropertyValue,...) configures the property
PropertyName to the specified value PropertyValue for image acquisition
object obj. You can specify multiple property name/property value pairs in a
single statement. obj can be a single image acquisition object or a vector of
image acquisition objects, in which case set configures the property values for
all the image acquisition objects specified.
7-39

set
set(obj,S) configures the properties of obj with the values specified in S,
where S is a structure whose field names are object property names.

set(obj,PN,PV) configures the properties specified in the cell array of strings,
PN, to the corresponding values in the cell array PV, for the image acquisition
object obj. PN must be a vector. If obj is an array of image acquisition objects,
PV can be an M-by-N cell array, where M is equal to the length of the image
acquisition object array and N is equal to the length of PN. In this case, each
image acquisition object is updated with a different set of values for the list of
property names contained in PN.

Note Parameter/value string pairs, structures, and parameter/value cell
array pairs can be used in the same call to set.

Example These examples illustrate the various ways to use the set function to set the
values of image acquisition object properties.

set(obj, 'FramesPerTrigger', 15, 'LoggingMode', 'disk');

set(obj, {'TimerFcn', 'TimerPeriod'}, {@imaqcallback, 25});

set(obj, 'Name', 'MyObject');

set(obj, 'SelectedSourceName')

See Also get, imaqfind, videoinput
7-40

start
7startPurpose Obtain exclusive use of an image acquisition device

Syntax start(obj)

Description start(obj) obtains exclusive use of the image acquisition device associated
with the video input object obj and locks the device's configuration. Starting an
object is a necessary first step to acquire image data, but it does not control
when data is logged.

obj can either be a 1-by-1 video input object or an array of video input objects.

Data logging is controlled with the TriggerType property.

Use the triggerconfig function to configure the object's trigger settings.

When an acquisition is started, obj performs the following operations:

1 Transfers the object’s configuration to the associated hardware

2 Executes the object’s StartFcn callback

3 Sets the object’s Running property to 'On'

If the object’s StartFcn errors, the hardware is never started and the object’s
Running property remains 'Off'.

The start event is recorded in the object's EventLog property.

Trigger Type Logging Behavior

 'hardware' Data logging occurs when the condition specified in
the object's TriggerCondition property is met via
the TriggerSource.

'immediate' Data logging occurs immediately.

'manual' Data logging occurs when the trigger function is
called.
7-41

start
An image acquisition object stops running when one of the following conditions
is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when
FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object's Timeout value is reached.

Example The start function can be called by a video input object's event callback.

obj.StopFcn = {'start'};

See Also imaqfind, imaqhelp, propinfo, stop, trigger, triggerconfig
7-42

stop
7stopPurpose Stop video input object running and logging

Syntax stop(obj)

Description stop(obj) halts an acquisition associated with the video input object obj. obj
can be either a single video input object or an array of video input objects.

The stop function

• Sets the object's Running property to 'Off'

• Sets the object's Logging property to 'Off', if needed

• Executes the object's StopFcn callback

An image acquisition object can also stop running under one of the following
conditions:

• The requested number of frames is acquired. This occurs when
FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object's Timeout value is reached.

The stop event is recorded in the object’s EventLog property.

Example The stop function can be called by a video input object's event callback.

obj.TimerFcn = {'stop'};

See Also imaqfind, start, trigger, propinfo, videoinput
7-43

trigger
7triggerPurpose Initiate data logging

Syntax trigger(obj)

Description trigger(obj) initiates data logging for the video input object obj. obj can be
either a single video input object or an array of video input objects.

The trigger function

• Executes the object's TriggerFcn callback

• Records the absolute time of the first trigger event in the object's
InitialTriggerTime property

• Configures the object’s Logging property to 'On'

obj must be running and its TriggerType property must be set to 'manual'. To
start an object running, use the start function.

The trigger event is recorded in the object’s EventLog property.

Example The trigger function can be called by a video input object’s event callback.

obj.StartFcn = @trigger;

See Also imaqfind, start, stop, videoinput
7-44

triggerconfig
7triggerconfigPurpose Configure video input object trigger properties

Syntax triggerconfig(obj,'type')
triggerconfig(obj,'type','condition')
triggerconfig(obj,'type','condition','source')
config = triggerconfig(obj)
triggerconfig(obj,config)

Description triggerconfig(obj,'type')
triggerconfig(obj,'type','condition')
triggerconfig(obj,'type','condition','source') configures the values of
the TriggerType, TriggerCondition, and TriggerSource properties of video
input object obj to the values specified by type, condition, and source,
respectively.

obj can be either a single video input object or an array of video input objects.
If an error occurs, any video input objects in the array that have already been
configured are returned to their original configurations.

type, condition, and source are text strings. For a list of valid trigger
configurations, use triggerinfo(obj). condition and source are optional
parameters as long as a unique trigger configuration can be determined from
the parameters provided.

config = triggerconfig(obj) returns a MATLAB structure config
containing the object’s current trigger configuration. obj must be a 1-by-1 video
input object. The field names of config are TriggerType, TriggerCondition,
and TriggerSource. Each field contains the current value of the object's
property.

triggerconfig(obj,config) configures the TriggerType, TriggerCondition,
and TriggerSource property values for video input object obj using config, a
MATLAB structure with field names TriggerType, TriggerCondition, and
TriggerSource, each containing the desired property value.

Examples Example 1
Construct a video input object.

vid = videoinput('winvideo', 1);
7-45

triggerconfig
Configure trigger properties for the object.

triggerconfig(vid, 'manual')

Trigger the acquisition.

start(obj)
trigger(obj)

Remove video input object from memory.

delete(vid);

Example 2
This example uses a structure returned from triggerinfo to configure trigger
parameters.

Create a video input object.

vid = videoinput('winvideo', 1);

Use triggerinfo to get all valid configurations for the trigger properties for
the object.

config = triggerinfo(vid);

Pass one of the configurations to the triggerconfig function.

triggerconfig(vid,config(2));

Remove video input object from memory.

delete(vid);

See Also imaqhelp, trigger, triggerinfo, videoinput
7-46

triggerinfo
7triggerinfoPurpose Provide information on available trigger configurations

Syntax triggerinfo(obj)
triggerinfo(obj,type)
config = triggerinfo(...)

Description triggerinfo(obj) displays all available trigger configurations for video input
object obj. obj can only be a 1-by-1 video input object.

triggerinfo(obj,type) displays the available trigger configurations for the
specified TriggerType, type, for video input object obj.

config = triggerinfo(...) returns config, an array of MATLAB
structures, containing all the valid trigger configurations for the video input
object obj. Each structure in the array contains these fields:

You can pass one of the structures in config to the triggerconfig function to
specify the trigger configuration.

Example This example illustrates how to use the triggerinfo function to retrieve valid
configurations of the TriggerType, TriggerSource, and TriggerCondition
properties.

vid = videoinput('winvideo');

config = triggerinfo(vid)

config =

Field Description

TriggerType Name of the trigger type

TriggerCondition Condition that must be met before executing a
trigger

TriggerSource Hardware source used for triggering
7-47

triggerinfo
1x2 struct array with fields:
 TriggerType
 TriggerCondition
 TriggerSource

config(1)

ans =

 TriggerType: 'immediate'
 TriggerCondition: 'none'
 TriggerSource: 'none'

See Also imaqhelp, triggerconfig
7-48

videoinput
7videoinputPurpose Create a video input object

Syntax obj = videoinput('adaptorname')
obj = videoinput('adaptorname', deviceID)
obj = videoinput('adaptorname', deviceID, 'format')
obj = videoinput('adaptorname', deviceID, 'devicefilename')
obj = videoinput('adaptorname', deviceID, 'format','P1',

V1,'P2',V2,...)
obj = videoinput('adaptorname', deviceID, 'devicefilename','P1',

V1,'P2',V2,...)

Description obj = videoinput('adaptorname')
obj = videoinput('adaptorname',deviceID)
obj = videoinput('adaptorname',deviceID,'format') constructs a video
input object obj, where

Valid deviceID and format values, as well as the default format, can be
determined by using the imaqhwinfo('adaptorname') syntax.

Upon creation, the object’s VideoFormat property reflects the specified format.
The toolbox chooses the first available video source object as the selected source
and specifies this video source object’s name in the object’s
SelectedSourceName property. Use getselectedsource(obj) to access the
video source object that is used for acquisition.

As a convenience, a device's name can be used in place of the deviceID. If
multiple devices have the same name, the first available device is used.

obj = videoinput('adaptorname',deviceID,'devicefilename') constructs
a video input object using a device configuration file, devicefilename, as the

'adaptorname' String specifying the device adaptor obj is associated
with. Valid values can be determined by using the
imaqhwinfo function.

'deviceID' Numerical device identifier. If deviceID is not specified,
the first available device ID is used.

'format' String specifying the video format for obj. If format is not
specified, the device's default format is used.
7-49

videoinput
video format. The object’s VideoFormat property reflects the devicefilename
and its path.

obj = videoinput('adaptorname',deviceID,'format','P1',V1,'P2',
V2,...)
obj = videoinput('adaptorname',deviceID,'devicefilename','P1',V1,
'P2',V2,...) creates a video input object obj with the specified property
values. If an invalid property name or property value is specified the object is
not created.

The property value pairs can be in any format supported by the set function,
i.e., parameter/value string pairs, structures, or parameter/value cell array
pairs.

To view a complete listing of video input object functions and properties, use
the imaqhelp function.

imaqhelp videoinput

Example Construct a video input object.

obj = videoinput('matrox', 1);

Select the source to use for acquisition.

set(obj, 'SelectedSourceName', 'input1')

View the properties for the selected video source object.

src_obj = getselectedsource(obj);
get(src_obj)

Preview a stream of image frames.

preview(obj);

Acquire and display a single image frame.

frame = getsnapshot(obj);
image(frame);
7-50

videoinput
Remove video input object from memory.

delete(obj);

See Also delete, imaqfind, isvalid, preview
7-51

wait
7waitPurpose Wait for the image acquisition object to stop running

Syntax wait(obj)
wait(obj,waittime)

Description wait(obj) blocks the MATLAB command line until the video input object obj
stops running (Running = 'off'). obj can be either a single video input object
or an array of video input objects. When obj is an array of objects, the wait
function waits until all objects in the array stop running. If the object is not
running or is an invalid object, wait returns immediately.

wait(obj,waittime) blocks the MATLAB command line until the video input
object obj stops running or until waittime seconds have expired, whichever
comes first.

Note The video input object’s stop event callback function (StopFcn) might
not be called before this function returns.

An image acquisition object stops running when one of the following conditions
is met:

• The stop function is issued.

• The requested number of frames is acquired. This occurs when
FramesAcquired = FramesPerTrigger * (TriggerRepeat + 1)

where FramesAcquired, FramesPerTrigger, and TriggerRepeat are
properties of the video input object.

• A run-time error occurs.

• The object's Timeout value is reached.

Example Create a video input object.

vid = videoinput('winvideo');

Specify an acquisition that should take several seconds. The example sets the
FramesPerTrigger property to 300.

vid.FramesPerTrigger = 300;
7-52

wait
Start the object. Because it is configured with an immediate trigger (the
default), acquisition begins when the object is started. The example calls the
wait function after calling the start function. Notice how wait blocks the
MATLAB command line until the acquisition is complete.

start(vid), wait(vid);

See Also imaqhelp, start, stop, trigger, propinfo
7-53

wait
7-54

8

Property Reference

This chapter describes all the properties of video input objects and the properties of the video source
object that are common to all video source objects. Video source objects can also support
device-specific properties that vary depending on the image acquisition hardware. To get help on
these device-specific properties, use the imaqhelp function, specifying the video source object as an
argument.

Properties – By Category
(p. 8-2)

Contains a series of tables that provide brief descriptions of image
acquisition object properties, arranged by category, followed by
individual reference pages for each property

8 Property Reference

8-2
Properties – By Category
This section contains brief descriptions of all properties supported by the image
acquisition objects. The descriptions are organized by image acquisition object
type:

• Video input object properties

• Video source object properties

Video Input Object Properties
The following tables list all the properties of the video input object in several
categories

• General properties

• Callback function properties

• Trigger properties

• Acquisition source properties

General Properties

DeviceID Identify the image acquisition device
represented by the video input object

DiskLogger Specify the MATLAB AVIFILE object for
logging data to disk

DiskLoggerFrameCount Indicate the number of frames written to disk

EventLog Specify a structure array storing information
related to specific events

FrameGrabInterval Specify how often to acquire a frame from the
video stream

FramesAcquired Indicate the total number of frames acquired

FramesAvailable Indicate the number of frames available in
the memory buffer

Properties – By Category
FramesPerTrigger Specify the number of frames to acquire using
the selected video source

Logging Indicate whether data is currently being
logged to memory, disk, or both

LoggingMode Specify the destination for acquired data

Name Specify a descriptive name for the device
object

NumberOfBands Specify the number of color bands in the data
to be acquired

Previewing Indicate whether data is being previewed in a
window

ReturnedColorSpace Specify the color space used to return
acquired data to MATLAB

ROIPosition Specify the region-of-interest acquisition
window

Running Indicate whether the video input object is
ready for acquisition

Tag Specify a label to associate with an image
acquisition object

Timeout Specify an additional waiting time to extract
data

Type Indicate the class type of the image
acquisition object

UserData Specify data to associate with an image
acquisition object

General Properties (Continued)
8-3

8 Property Reference

8-4
VideoFormat Indicate the video input format for the image
acquisition device

VideoResolution Indicate the width and height of the incoming
video stream

Callback Properties

ErrorFcn Specify the M-file executed when a run-time
error occurs

FramesAcquiredFcn Specify the M-file executed when a frames
acquired event occurs

FramesAcquiredFcnCount Specify the number of frames to acquire from
the selected video source before a frames
acquired event is generated

StartFcn Specify the M-file executed before a video
input object starts running

StopFcn Specify the M-file executed when a video
input object stops running

TimerFcn Specify the M-file executed when a time
period expires

TimerPeriod Specify the period of time between timer
events

TriggerFcn Specify the M-file executed when a trigger
occurs

General Properties (Continued)

Properties – By Category
Trigger Properties

InitialTriggerTime Indicate the absolute time of the first trigger

TriggerCondition Specify the condition on which to execute a
hardware trigger

TriggerFrameDelay Specify the number of frames to delay before
logging image frames

TriggerRepeat Specify the number of additional times to
execute the trigger

TriggersExecuted Indicate the number of triggers that have
been executed

TriggerSource Specify the source to use for executing a
hardware trigger

TriggerType Specify the type of trigger to execute

Acquisition Source Properties

SelectedSourceName Name of video source object used for acquisition

Source Array of video source objects associated with a
video input object
8-5

8 Property Reference

8-6
Video Source Object Properties
Video input objects create one or more video source objects that represent the
image acquisition data sources. The following table lists the properties common
to all video source objects.

Note A video source object can support additional, device-specific properties.
These properties vary, depending on the image acquisition hardware. To get
information about these properties, use the imaqhelp function, specifying the
video source object as an argument.

Video Source Object Properties

Parent Indicate the parent of the video source object

Selected Indicate whether the video source object is currently
selected

SourceName Indicate the name of a video source object

Tag Specify a label to associate with an image acquisition
object

Type Indicate the class type of the image acquisition object

DeviceID
8DeviceIDPurpose Identify the image acquisition device represented by the video input object

Description The DeviceID property identifies the device represented by the video input
object.

A device ID is a number, assigned by an adaptor, that uniquely identifies an
image acquisition device. The adaptor assigns the first device it detects the
identifier 1, the second device it detects the identifier 2, and so on.

You must specify the device ID as an argument to the videoinput function
when you create a video input object. The object stores the value in the
DeviceID property and also uses the value when constructing the default value
of the Name property.

To get a list of the IDs of the devices connected to your system, use the
imaqhwinfo function, specifying the name of a particular adaptor as an
argument.

Characteristics

Example Use the imaqhwinfo function to determine which adaptors are connected to
devices on your system.

imaqhwinfo

ans =

InstalledAdaptors: {'matrox' 'winvideo'}
 MATLABVersion: '6.5.1 (R13+)'
 ToolboxName: 'Image Acquisition Toolbox'
 ToolboxVersion: '1.0 (R13+)'

Access Read only

Data type double

Values Any nonnegative integer
8-7

DeviceID
Use the imaqhwinfo function again, specifying the name of the adaptor, to find
out how many devices are available through that adaptor. The imaqhwinfo
function returns the device IDs for all the devices in the DeviceIds field.

info = imaqhwinfo('winvideo')

info =

AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '1.0 (R13+)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

See Also Functions
imaqhwinfo, videoinput

Properties
Name
8-8

DiskLogger
8DiskLoggerPurpose Specify the MATLAB AVI file object used to log data

Description The DiskLogger property specifies the AVI file object used to log data when the
LoggingMode property is set to 'disk' or 'disk&memory'.

A MATLAB AVI file object specifies the name and other characteristics of an
AVI file. For example, you can use AVI file object properties to specify the codec
used for data compression and the desired quality of the output. For complete
information about the AVI file object and its properties, see the avifile
documentation.

Note Do not use the variable returned by the avifile function to perform
any operation on an AVI file object while it is being used by a video input
object for data logging. For example, do not change any of the AVI file object
properties, add frames, or close the object. Your changes could conflict with the
video input object.

When the video input object finishes logging data to disk, the AVI file object
remains open. The video input object does not open or close an AVI file object
used for logging. The video input object, however, does update the Width,
Height, and TotalFrames fields in the AVI file object to reflect the current
acquisition settings.

After Logging and Running are off, it is possible that the DiskLogger might still
be writing data to disk. When the DiskLogger finishes writing data to disk, the
value of the DiskLoggerFrameCount property should equal the value of the
FramesAcquired property. Do not close or modify the DiskLogger until this
condition is met.

Characteristics

Access Read only while running

Data type AVI file object

Values The default value is [].
8-9

DiskLogger
Example Create and configure an AVI file object.

file = avifile('logfile.avi');
file.Quality = 50;

Create and configure a video input object.

vid = videoinput('winvideo', 1);
vid.LoggingMode = 'disk&memory';
vid.DiskLogger = file;

Start logging data to disk.

start(vid)

To ensure that the logged data is written to the disk file, close the AVI file. As
an argument to the close function, specify the value of the video input object
DiskLogger property, vid.DiskLogger, to reference the AVI file object, not the
original variable, file, returned by the avifile function.

file = close(vid.DiskLogger);

Delete the image acquisition object from memory when it is no longer needed.

delete(vid)
clear vid

See Also Functions
videoinput

Properties
DiskLoggerFrameCount, Logging, LoggingMode
8-10

DiskLoggerFrameCount
8DiskLoggerFrameCountPurpose Specify the number of frames written to disk

Description The DiskLoggerFrameCount property indicates the current number of frames
written to disk by the DiskLogger. This value is only updated when the
LoggingMode property is set to 'disk' or 'disk&memory'.

After Logging and Running are off, it is possible that the DiskLogger might still
be writing data to disk. When the DiskLogger finishes writing data to disk, the
value of the DiskLoggerFrameCount property should equal the value of the
FramesAcquired property. Do not close or modify the DiskLogger until this
condition is met.

Characteristics

See Also Functions
videoinput

Properties
DiskLogger, FramesAcquired, Logging, Running

Access Read only

Data type double

Values Any nonnegative integer
8-11

ErrorFcn
8ErrorFcnPurpose Specify the M-file callback function to execute when a run-time error occurs

Description The ErrorFcn property specifies the function to execute when an error event
occurs. A run-time error event is generated immediately after a run-time error
occurs.

Run-time errors include hardware errors and timeouts. Run-time errors do not
include configuration errors such as setting an invalid property value.

Run-time error event information is stored in the EventLog property. You can
retrieve any error message with the Data.Message field of EventLog.

Characteristics

See Also Properties
EventLog, Timeout

Access Read only while running

Data type String, function handle, or cell array

Values imaqcallback is the default callback function.
8-12

EventLog
8EventLogPurpose Store information about events

Description The EventLog property is an array of structures that stores information about
events. Each structure in the array represents one event. Events are recorded
in the order in which they occur. The first EventLog structure reflects the first
event recorded, the second EventLog structure reflects the second event
recorded, and so on.

Each event log structure contains two fields: Type and Data.

The Type field stores a character array that identifies the event type. The
Image Acquisition Toolbox defines many different event types, listed in this
table. Note that not all event types are logged.

The Data field stores information associated with the specific event. For
example, all events return the absolute time the event occurred in the AbsTime
field. Other event-specific fields are included in Data. For more information,
see “Retrieving Event Information” on page 6-6.

Event Type Description Included in Log

Error Run-time error occurred.
Run-time errors include
timeouts and hardware
errors.

Yes

Frames Acquired The number of frames
specified in the
FramesAcquiredFcnCount
property has been acquired.

No

Start Object was started by calling
the start function.

Yes

Stop Object stopped executing. Yes

Timer Timer expired. No

Trigger Trigger executed. Yes
8-13

EventLog
Characteristics

Example Create a video input object.

vid = videoinput('winvideo');

Start the object.

start(vid)

View the event log to see which events occurred.

elog = vid.EventLog;

{elog.Type}

ans =
 'Start' 'Trigger' 'Stop'

View the data associated with a trigger event.

elog(2).Data
ans =

 AbsTime: [2003 2 11 17 22 18.9740]
 FrameMemoryLimit: 12288000
 FrameMemoryUsed: 0
 FrameNumber: 0
 RelativeFrame: 0
 TriggerIndex: 1

See Also Properties
Logging

Access Read only

Data type Structure array

Values Default is empty structure array.
8-14

FrameGrabInterval
8FrameGrabIntervalPurpose Specify how often to acquire a frame from the video stream

Description The FrameGrabInterval property specifies how often the video input object
acquires a frame from the video stream. By default, objects acquire every frame
in the video stream, but you can use this property to specify other acquisition
intervals.

Note Do not confuse the frame grab interval with the frame rate. The frame
rate describes the rate at which an image acquisition device provides frames,
typically measured in seconds, such as 30 frames per second. The frame grab
interval is measured in frames, not seconds. If a particular device’s frame rate
is configurable, the video source object might include the frame rate as a
device-specific property.

For example, when you specify a FrameGrabInterval value of 3, the object
acquires every third frame from the video stream, as illustrated in this figure.
The object acquires the first frame in the video stream before applying the
FrameGrabInterval.
.

You specify the source of the video stream in the SelectedSourceName
property.

Object acquires the first frame and
then applies FrameGrabInterval.

Video stream . . .F1 F2 F3 F9F8F7F6F5F4

FrameGrabInterval = 3

F10

Trigger
executes; data
logging begins.

Acquisition
stops.

F12F11 F13

FramesPerTrigger=4
8-15

FrameGrabInterval
Characteristics

See Also Functions
videoinput

Properties
SelectedSourceName

Access Read only while running

Data type double

Values Any positive integer. The default value is 1 (acquire
every frame).
8-16

FramesAcquired
8FramesAcquiredPurpose Indicate the total number of frames acquired

Description The FramesAcquired property indicates the total number of frames that the
object has acquired, regardless of how many frames have been extracted from
the memory buffer. The video input object continuously updates the value of
the FramesAcquired property as it acquires frames.

Note When you issue a start command, the video input object resets the
value of the FramesAcquired property to 0 (zero) and flushes the buffer.

To find out how many frames are available in the memory buffer, use the
FramesAvailable property.

Characteristics

See Also Functions
start

Properties
FramesAvailable, FramesAcquiredFcn, FramesAcquiredFcnCount

Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
8-17

FramesAcquiredFcn
8FramesAcquiredFcnPurpose Specify the M-file executed when a specified number of frames have been
acquired

Description The FramesAcquiredFcn specifies the M-file function to execute every time a
predefined number of frames have been acquired.

A frames acquired event is generated immediately after the number of frames
specified by the FramesAcquiredFcnCount property is acquired from the
selected video source. This event executes the M-file specified for
FramesAcquiredFcn.

Use the FramesAcquiredFcn callback if you must access each frame that is
acquired. If you do not have this requirement, you might want to use the
TimerFcn property.

Frames acquired event information is not stored in the EventLog property.

Characteristics

See Also Properties
EventLog, FramesAcquiredFcnCount, TimerFcn

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
8-18

FramesAcquiredFcnCount
8FramesAcquiredFcnCountPurpose Specify the number of frames that must be acquired before a frames acquired
event is generated

Description The FramesAcquiredFcnCount property specifies the number of frames to
acquire from the selected video source before a frames acquired event is
generated.

The object generates a frames acquired event immediately after the number of
frames specified by FramesAcquiredFcnCount is acquired from the selected
video source.

Characteristics

See Also Properties
FramesAcquiredFcn

Access Read only while running

Data type double

Values Any positive integer. The default value is 0 (zero).
8-19

FramesAvailable
8FramesAvailablePurpose Indicate the number of frames available in the memory buffer

Description The FramesAvailable property indicates the total number of frames that are
available in the memory buffer. When you extract data, the object reduces the
value of the FramesAvailable property by the appropriate number of frames.
You use the getdata function to extract data and move it into the MATLAB
workspace.

Note When you issue a start command, the video input object resets the
value of the FramesAvailable property to 0 (zero) and flushes the buffer.

To view the total number of frames that have been acquired since the last
start command, use the FramesAcquired property.

Characteristics

See Also Functions
getdata, start

Properties
FramesAcquired

Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
8-20

FramesPerTrigger
8FramesPerTriggerPurpose Specify the number of frames to acquire for each trigger using the selected
video source

Description The FramesPerTrigger property specifies the number of frames the video input
object acquires each time it executes a trigger using the selected video source.

When the value of the FramesPerTrigger property is set to Inf, the object
keeps acquiring frames until an error occurs or you issue a stop command.

Note When the FramesPerTrigger property is set to Inf, the object ignores
the value of the TriggerRepeat property.

Characteristics

See Also Functions
stop

Properties
TriggerRepeat

Access Read only while running

Data type double

Values Any positive integer. The default value is 10.
8-21

InitialTriggerTime
8InitialTriggerTimePurpose Record the absolute time of the first trigger

Description The InitialTriggerTime property records the absolute time of the first
trigger. The absolute time is recorded as a MATLAB clock vector.

For all trigger types, InitialTriggerTime records the time when the Logging
property is set to 'on'.

To find the time when a subsequent trigger executed, view the Data.AbsTime
field of the EventLog property for the particular trigger.

Characteristics

Example Create an image acquisition object, vid, for a USB-based Webcam.

vid = videoinput('winvideo',1);

Start the object. Because the TriggerType property is set to 'immediate' by
default, the trigger executes immediately. The object records the time of the
initial trigger.

start(vid)

abstime = vid.InitialTriggerTime

abstime =

1.0e+003 *

1.9990 0.0020 0.0190 0.0130 0.0260 0.0208

Access Read only

Data type Six-element vector of doubles (MATLAB clock vector)

Values The default value is [].
8-22

InitialTriggerTime
Convert the clock vector into an integer form for display.

t = fix(abstime);

sprintf('%d:%d:%d', t(4),t(5),t(6))

ans =

13:26:20

See Also Functions
clock, getdata

Properties
EventLog, Logging, TriggerType
8-23

Logging
8LoggingPurpose Indicate whether the object is currently logging data

Description The Logging property indicates whether the video input object is currently
logging data.

When a trigger occurs, the object sets the Logging property to 'on' and logs
data to memory, a disk file, or both, depending on the value of the LoggingMode
property.

The object sets the Logging property to 'off' when it acquires the requested
number of frames, an error occurs, or you issue a stop command.

To acquire data when the object is running but not logging, use the peekdata
function. Note, however, that the peekdata function does not guarantee that all
the requested image data is returned. To acquire all the data without gaps, you
must have the object log the data to memory or to a disk file.

Characteristics Default value is enclosed in braces ({}).

See Also Functions
getdata, peekdata, stop, trigger

Properties
LoggingMode, Running

Access Read only

Data type String

Values [{'off'} | 'on']
8-24

LoggingMode
8LoggingModePurpose Specify the destination for acquired data

Description The LoggingMode property specifies where you want the video input object to
store the acquired data. You can specify any of the following values:

If you select 'disk' or 'disk&memory', you must specify the AVI file object
used to access the disk file as the value of the DiskLogger property.

Note When logging data to memory, you must extract the acquired data in a
timely manner with the getdata function to avoid using up all the memory
that is available on your system. Use imaqmem to limit the amount of memory
used.

Characteristics Default value is enclosed in braces ({}).

See Also Functions
getdata

Properties
DiskLogger, Logging

Value Description

'disk' Log acquired data to a disk file.

'disk&memory' Log acquired data to both a disk file and to a
memory buffer.

'memory' Log acquired data to a memory buffer.

Access Read only while running

Data type String

Values ['disk' | 'disk&memory' | {'memory'}]
8-25

Name
8NamePurpose Specify the name of the image acquisition object

Description The Name property specifies a descriptive name for the image acquisition object.

Characteristics

Example Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the Name property using the get function.

get(vid,'Name')

ans =

RGB555_128x96-winvideo-1

See Also Functions
videoinput

Properties
DeviceID, VideoFormat

Access Read/write

Data type String

Values Any text string. The toolbox creates the default name by
combining the values of the VideoFormat and DeviceID
properties with the adaptor name in this format:

VideoFormat + '-' + adaptor name + '-' + DeviceID
8-26

NumberOfBands
8NumberOfBandsPurpose Indicate the number of color bands in the data to be acquired

Description The NumberOfBands property indicates the number of color bands in the data to
be acquired. The toolbox defines band as the third dimension in a 3-D array, as
shown in this figure.

The value of the NumberOfBands property indicates the number of color bands
in the data returned by getsnapshot, getdata, and peekdata.

Characteristics

Example Create an image acquisition object.

vid = videoinput('winvideo');

Retrieve the value of the NumberOfBands property using the get function.

get(vid,'NumberOfBands')

ans =

3

Row

Band 3
Band

Band 1

Band 2

Column

Access Read only

Data type double

Values Any positive integer. The default value is defined at
object creation time based on the video format.
8-27

NumberOfBands
If you retrieve the value of the VideoFormat property, you can see that the
video data is in RGB format.

get(vid,'VideoFormat')

ans =

RGB24_320x240

See Also Functions
getdata, getsnapshot, peekdata
8-28

Parent
8ParentPurpose Identify the video input object that is the parent of a video source object

Description The Parent property identifies the video input object that is the parent of a
video source object.

The parent of a video source object is defined as the video input object owning
the video source object.

Characteristics

See Also Functions
videoinput

Access Read only

Data type Video input object

Values Defined at object creation time
8-29

Previewing
8PreviewingPurpose Indicate whether the object is currently previewing data in a separate window

Description The Previewing property indicates whether the object is currently previewing
data in a separate window.

The object sets the Previewing property to 'on' when you call the preview
function.

The object sets the Previewing property to 'off' when you close the preview
window using the closepreview function or by clicking the Close button in the
preview window title bar.

Characteristics Default value is enclosed in braces ({}).

See Also Functions
closepreview, preview

Access Read only

Data type String

Values [{'off'} | 'on']
8-30

ReturnedColorSpace
8ReturnedColorSpacePurpose Specify the color space used in MATLAB

Description The ReturnedColorSpace property specifies the color space used when
acquired image data is returned to the MATLAB workspace. This is only
relevant when you are accessing acquired image data with the getsnapshot,
getdata, and peekdata functions.

This property can have any of the following values:

Characteristics

See Also Functions
getsnapshot, getdata, peekdata, videoinput

Properties
VideoFormat

Value Description

'grayscale' Grayscale color space

'rgb' RGB color space

'YCbCr' YCbCr color space

'ntsc' NTSC color space

'hsv' HSV color space

'unknown' The color space used in MATLAB could not be
determined.

Access Read only

Data type String

Values Defined at object creation time and depends on the video
format selected
8-31

ROIPosition
8ROIPositionPurpose Specify the region-of-interest (ROI) window

Description The ROIPosition property specifies the region-of-interest acquisition window.
The ROI window defines the actual size of the frame logged by the toolbox,
measured with respect to the top left corner of an image frame.

Note Video input objects only support this property if the image acquisition
device supports the definition of ROIs. Generic Windows image acquisition
devices, accessible through the 'winvideo' adaptor, do not support the
definition of ROIs.

ROIPosition is specified as a 1-by-4 element vector

[XOffset YOffset Width Height]

where

XOffset Position of the upper left corner of the ROI,
measured in pixels.

YOffset Position of the upper left corner of the ROI,
measured in rows.

Width Width of the ROI, measured in pixels. The sum of
XOffset and Width cannot exceed the width
specified in VideoResolution.

Height Height of the ROI, measured in rows. The sum of
YOffset and Height cannot exceed the height
specified in VideoResolution.
8-32

ROIPosition
Characteristics

See Also Properties
VideoResolution

Video frame
Resolution 240x320

XOffset, YOffset
Width

Height
ROI
[50, 50, 120,100]

Access Read only while running

Data type 1-by-4 element vector of doubles

Values Default is [0 0 width height] where width and
height are determined by VideoResolution.
8-33

Running
8RunningPurpose Indicate if the video input object is ready to acquire data

Description The Running property indicates if the video input object is ready to acquire
data.

Along with the Logging property, Running reflects the state of a video input
object. The Running property indicates that the object is ready to acquire data,
while the Logging property indicates that the object is acquiring data.

The object sets the Running property to 'on' when you issue the start
command. When Running is 'on', you can acquire data from a video source.

The object sets the Running property to 'off' when any of the following
conditions are met:

• The specified number of frames has been acquired.

• A run-time error occurs.

• You issue the stop command.

When Running is 'off', you cannot acquire image data. However, you can
acquire one image frame with the getsnapshot function.

Characteristics Default value is enclosed in braces ({}).

See Also Properties
getsnapshot, start, stop

Properties
Logging

Access Read only

Data type String

Values [{'off'} | 'on']
8-34

Selected
8SelectedPurpose Indicate if the video source object will be used for acquisition

Description The Selected property indicates if the video source object will be used for
acquisition. You select a video source object by specifying its name as the value
of the video input object's SelectedSourceName property. The video input
object Source property is an array of all the video source objects associated with
the video input object.

If Selected is 'on', the video source object is selected. If the value is 'off', the
video source object is not selected.

A video source is defined to be a collection of one or more physical data sources
that are treated as a single entity. For example, hardware supporting multiple
RGB sources, each of which is made up of three physical connections (red,
green, and blue), is treated as a single video source object.

Characteristics Default value is enclosed in braces ({}).

Example Create an image acquisition object.

vid = videoinput('winvideo');

Determine the currently selected video source object.

vid.SelectedSourceName

ans =

input1

Retrieve the currently selected video source object.

src = getselectedsource(vid);

Access Read only

Data type String

Values [{'off'} | 'on']
8-35

Selected
View its Name and Selected properties.

src.SourceName

ans =

input1

src.Selected

ans =

on

See Also Functions
getselectedsource

Properties
SelectedSourceName
8-36

SelectedSourceName
8SelectedSourceNamePurpose Specify the name of the currently selected video source

Description The SelectedSourceName property specifies the name of the video source object
from which the video input object acquires data. The name is specified as a
string. By default, the video input object selects the first available video source
object stored in the Source property.

The toolbox defines a video source as one or more hardware inputs that are
treated as a single entity. For example, hardware supporting multiple RGB
sources, each of which is made up of three physical connections
(red-green-blue), is treated as a single video source object.

Characteristics

Example To see a list of all available sources, create a video input object.

vid = videoinput('matrox');

Use the set function to view a list of all available video source objects.

src_names = set(obj,'SelectedSourceName');

See Also Functions
set

Properties
Source

Access Read only while running

Data type String

Values The video input object assigns a name to each video
source object it creates. Names are defined at object
creation time and are vendor-specific.

By default, the toolbox uses the first available source
name.
8-37

Source
8SourcePurpose Indicate the video source objects associated with a video input object

Description The Source property is a vector of video source objects that represent the
physical data sources connected to a device. When a video input object is
created, the toolbox creates a vector of video source objects associated with the
video input object.

Each video source object created is provided a unique source name. You can use
the source name to select the desired acquisition source by configuring the
SelectedSourceName property of the video input object.

A video source object's name is stored in its SourceName property. If a video
source object's SourceName is equivalent to the video input object's
SelectedSourceName, the video source object's Selected property has a value
of 'on'.

The video source object supports a set of common properties, such as
SourceName. Each video source object can also support device-specific
properties that control characteristics of the physical device such as
brightness, hue, and saturation. Different image acquisition devices expose
different sets of properties.

A video source is defined to be a collection of one or more physical data sources
that are treated as a single entity. For example, hardware supporting multiple
RGB sources, each of which is made up of three physical connections
(red-green-blue), is treated as a single video source object.

The Source property encapsulates one or more video sources. To reference a
video source, you use a numerical integer to index into the vector of video
source objects.

Characteristics

Access Read only

Data type Vector of video source objects

Values Defined at object creation time
8-38

Source
Example Create an image acquisition object.

vid = videoinput('matrox');

To access all the video source objects associated with a video input object, use
the Source property of the video input object. (To view only the currently
selected video source object, use the getselectedsource function.)

sources = vid.Source;
src = sources(1);

To view the properties of the video source object src, use the get function.

get(src)
 General Settings:
 Parent = [1x1 videoinput]
 Selected = on
 SourceName = CH1
 Tag =
 Type = videosource

 Device Specific Properties:
 InputFilter = lowpass
 UserOutputBit3 = off
 UserOutputBit4 = off
 XScaleFactor = 1
 YScaleFactor = 1

See Also Functions
videoinput, getselectedsource

Properties
SelectedSourceName
8-39

SourceName
8SourceNamePurpose Indicate the name of a video source object

Description The SourceName property indicates the name of a video source object.

SourceName is one of the values in the video input object's SelectedSourceName
property.

Characteristics

See Also Functions
getselectedsource

Properties
SelectedSourceName, Source

Access Read only

Data type String

Values Defined at object creation time
8-40

StartFcn
8StartFcnPurpose Specify the M-file executed when a start event occurs

Description The StartFcn property specifies the M-file function to execute when a start
event occurs. A start event occurs immediately after you issue the start
command.

When the StartFcn M-file finishes executing, the toolbox sets the object’s
Running property to 'on' and the object begins executing.

Start event information is stored in the EventLog property.

Characteristics

See Also Properties
EventLog, Running

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
8-41

StopFcn
8StopFcnPurpose Specify the M-file executed when a stop event occurs

Description The StopFcn property specifies the M-file function to execute when a stop event
occurs. A stop event occurs immediately after you issue the stop command.

Under most circumstances, the M-file is not guaranteed to complete execution
until sometime after the image acquisition object stops and the Running
property is set to 'off'.

Stop event information is stored in the EventLog property.

Characteristics

See Also Properties
EventLog, Running

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
8-42

Tag
8TagPurpose Specify descriptive text to associate with an image acquisition object

Description The Tag property specifies any descriptive text that you want to associate with
an image acquisition object.

The Tag property can be useful when you are constructing programs that would
otherwise need to define the image acquisition object as a global variable, or
pass the object as an argument between callback routines.

You can use the value of the Tag property to search for particular image
acquisition objects when using the imaqfind function.

Characteristics

See Also Functions
imaqfind

Access Read/Write

Data type String

Values Any text string
8-43

Timeout
8TimeoutPurpose Specify how long to wait for image data

Description The Timeout property specifies the amount of time (in seconds) that the
getdata and getsnapshot functions wait for data to be returned. The Timeout
property is only associated with these blocking functions. If the specified time
period expires, the functions return control to the MATLAB command line.

A timeout is one of the conditions for stopping an acquisition. When a timeout
occurs, and the object is running, the M-file function specified by ErrorFcn is
called.

Note The Timeout property is not associated with hardware timeout
conditions.

Characteristics

See Also Functions
getdata, getsnapshot

Properties
EventLog, ErrorFcn

Access Read only while running

Data type double

Values Any positive integer. The default value is 10 seconds.
8-44

TimerFcn
8TimerFcnPurpose Specify the M-file callback function to execute when a timer event occurs

Description The TimerFcn property specifies the M-file callback function to execute when a
timer event occurs. A timer event occurs when the time period specified by the
TimerPeriod property expires.

The toolbox measures time relative to when the object is started with the start
function. Timer events stop being generated when the image acquisition object
stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics

See Also Functions
start, stop

Properties
TimerPeriod

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
8-45

TimerPeriod
8TimerPeriodPurpose Specify the number of seconds between timer events

Description The TimerPeriod property specifies the amount of time, in seconds, that must
pass before a timer event is triggered.

The toolbox measures time relative to when the object is started with the start
function. Timer events stop being generated when the image acquisition object
stops running.

Note Some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value you specify is too small.

Characteristics

See Also Functions
start, stop

Properties
EventLog, TimerFcn

Access Read only while running

Data type double

Values Any positive value. The minimum value is 0.01 seconds.
The default value is 1 (second).
8-46

TriggerCondition
8TriggerConditionPurpose Indicate the condition that must be met before a trigger event occurs

Description The TriggerCondition property indicates the condition that must be met, via
the TriggerSource, before a trigger event occurs. The trigger conditions that
you can specify depend on the value of the TriggerType property.

You must use the triggerconfig function to set the value of this property.

Characteristics

See Also Functions
trigger, triggerconfig, triggerinfo

Properties
TriggerSource, TriggerType

TriggerType Value Conditions Available

'hardware'
(if available for your
device)

Device-specific.
For example, some Matrox hardware support
conditions such as 'risingEdge' and
'fallingEdge'. Use the triggerinfo function to
view a list of valid values to use with your image
acquisition hardware.

'immediate' 'none'

'manual' 'none'

Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String

Values Device specific. Use the triggerinfo function to view a
list of valid values to use with your image acquisition
hardware.
8-47

TriggerFcn
8TriggerFcnPurpose Specify the M-file callback function to execute when a trigger event occurs

Description The TriggerFcn property specifies the M-file callback function to execute when
a trigger event occurs. The toolbox generates a trigger event when a trigger is
executed based on the configured TriggerType, and data logging is initiated.

Under most circumstances, the M-file callback function is not guaranteed to
complete execution until sometime after the toolbox sets the Logging property
to 'on'.

Trigger event information is stored in the EventLog property.

Characteristics

See Also Functions
trigger

Properties
EventLog, Logging

Access Read/write

Data type String, function handle, or cell array

Values The default value is an empty matrix ([]).
8-48

TriggerFrameDelay
8TriggerFrameDelayPurpose Specify the number of frames to skip before acquiring frames after a trigger
occurs

Description The TriggerFrameDelay property specifies the number of frames to skip before
acquiring frames after a trigger occurs. The object waits the specified number
of frames after the trigger before starting to log frames.

In this figure, the TriggerFrameDelay is set to 5, so the object lets five frames
pass before starting to acquire frames. The number of frames captured is
defined by the FramesPerTrigger property.

Characteristics

See Also Functions
trigger

Properties
FramesPerTrigger

Video stream . . .F4F3F2F1 F5

Start object;
video stream
begins.

F14F13F12F11

F13F12F11F10F9

Trigger
occurs.

Memory buffer

Acquisition
stops.

Toolbox logs frames
to buffer.

F10F9F8F7F6

TriggerFrameDelay=5 FramesPerTrigger=5

Logging
begins.

Access Read only while running

Data type double

Values Any integer. The default value is 0 (zero).
8-49

TriggerRepeat
8TriggerRepeatPurpose Specify the number of additional times to execute a trigger

Description The TriggerRepeat property specifies the number of additional times you want
the object to execute a trigger. This table describes the behavior for several
typical TriggerRepeat values.

To determine how many triggers have executed, check the value of the
TriggersExecuted property.

Note If the FramesPerTrigger property is set to Inf, the object ignores the
value of the TriggerRepeat property.

Characteristics

Value Behavior

0 (default) Execute the trigger once when the trigger condition is
met.

Any positive
integer

Execute the trigger the specified number of additional
times when the trigger condition is met.

Inf Keep executing the trigger every time the trigger
condition is met until the stop function is called or an
error occurs.

Access Read only while running

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
8-50

TriggerRepeat
See Also Functions
stop, trigger

Properties
FramesPerTrigger, TriggersExecuted, TriggerType
8-51

TriggersExecuted
8TriggersExecutedPurpose Indicate the total number of triggers that have been executed

Description The TriggersExecuted property indicates the total number of triggers that the
video input object has executed.

Characteristics

See Also Functions
trigger

Properties
EventLog

Access Read only

Data type double

Values Any nonnegative integer. The default value is 0 (zero).
8-52

TriggerSource
8TriggerSourcePurpose Indicate the hardware source to monitor for trigger conditions

Description The TriggerSource property indicates the hardware source the image
acquisition object monitors for trigger conditions. When the condition specified
in the TriggerCondition property is met, the object executes the trigger and
starts acquiring data.

You use the triggerconfig function to specify this value. The value of the
TriggerSource property is device specific. You specify whatever mechanism a
particular device uses to generate triggers.

For example, for Matrox hardware, the TriggerSource property could have
values such as 'Port0' or 'Port1'. Use the triggerinfo function to view a list
of values that are valid for your image acquisition device.

You must use the triggerconfig function to set the value of this property.

Note The TriggerSource property is only used when the TriggerType
property is set to 'hardware'.

Characteristics

See Also Functions
trigger, triggerconfig, triggerinfo

Properties
TriggerCondition, TriggerType

Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String

Values Device-specific. Use the triggerinfo function to get a
list of valid values.
8-53

TriggerType
8TriggerTypePurpose Indicate the type of trigger used by a video input object

Description The TriggerType property indicates the type of trigger used by the video input
object. Triggers initiate data acquisition.

You use the triggerconfig function to specify one of the following values for
this property.

Characteristics Default value is enclosed in braces ({}).

See Also Functions
trigger, triggerconfig, triggerinfo

Properties
TriggerCondition, TriggerSource

Trigger Type Description

'hardware'
(if available for
your device)

Trigger executes when a specified condition is met.
You specify the condition using the TriggerCondition
property and you specify the hardware source to
monitor for the condition in the TriggerSource
property. You use the triggerconfig function to set
the values of these properties.

'immediate' Trigger executes immediately after you call the start
function.

'manual' Trigger executes immediately after you call the
trigger function.

Access Read only. Use the triggerconfig function to set the
value of this property.

Data type String

Values ['hardware' | {'immediate'} | 'manual']
The 'hardware' option is only included for devices that
support hardware triggers.
8-54

Type
8TypePurpose Identify the type of image acquisition object

Description The Type property identifies the type of image acquisition object. An image
acquisition object can be either one of two types:

• Video input object

• Video source object

Characteristics

Example vid = videoinput('winvideo',1)

get(vid,'Type')

ans =

videoinput

This example gets the type of a video source object.

src = getselectedsource(vid);
get(src,'type')
ans =
 videosource

See Also Functions
getselectedsource, videoinput

Access Read only

Data type String

Values ['videoinput' | 'videosource'] Defined at object
creation time
8-55

UserData
8UserDataPurpose Store data that you want to associate with an image acquisition object

Description The UserData property specifies any data that you want to associate with an
image acquisition object.

Note The object does not use the data in UserData directly. However, you can
access the data by using the get function or by referencing the property as you
would a field in a MATLAB structure.

Characteristics

See Also Functions
get

Access Read/Write

Data type Any

Values User-defined
8-56

VideoFormat
8VideoFormatPurpose Specify the video format or the name of a device configuration file

Description The VideoFormat property specifies the video format used by the image
acquisition device or the name of a device configuration file, depending on
which you specified when you created the object using the videoinput function.

Image acquisition devices typically support multiple video formats. When you
create a video input object, you can specify the video format that you want the
device to use. If you do not specify the video format as an argument, the
videoinput function uses the default format. Use the imaqhwinfo function to
determine which video formats a particular device supports and find out which
format is the default.

As an alternative, you can specify the name of a device configuration file, also
known as a camera file or Digitizer Configuration Format (DCF) file. Some
image acquisition devices use these files to store device configuration
information. The videoinput function can use this file to determine the video
format and other configuration information.

Use the imaqhwinfo function to determine if your device supports device
configuration files.

Characteristics

Example To determine the video formats supported by a device, check the
SupportedFormats field in the device information structure returned by
imaqhwinfo.

Access Read only

Data type String

Values Device-specific. The example describes how to get a list
of all the formats supported by a particular image
acquisition device.
8-57

VideoFormat
info = imaqhwinfo('winvideo')

info =

 AdaptorDllName: [1x73 char]
 AdaptorDllVersion: '1.0 (R13+)'
 AdaptorName: 'winvideo'
 DeviceIDs: {[1]}
 DeviceInfo: [1x1 struct]

info.DeviceInfo

ans =

 DefaultFormat: 'RGB555_128x96'
 DeviceFileSupported: 0
 DeviceName: 'IBM PC Camera'
 DeviceID: 1
 ObjectConstructor: 'videoinput('winvideo', 1)'
 SupportedFormats: {1x34 cell}

See Also Functions
imaqhwinfo, videoinput
8-58

VideoResolution
8VideoResolutionPurpose Indicate the width and height of the incoming video stream

Description The VideoResolution property is a two-element vector indicating the width
and height of the frames in the incoming video stream. VideoResolution is
specified as

[Width Height]

Width is measured in pixels and height is measured in rows.

Note You specify the video resolution when you create the video input object,
by passing in the video format argument to the videoinput function. If you do
not specify a video format, the videoinput function uses the default video
format. Use the imaqhwinfo function to determine which video formats a
particular device supports and find out which format is the default.

Characteristics

See Also Functions
imaqhwinfo, videoinput

Properties
ROIPosition, VideoFormat

Access Read only

Data type Vector of doubles

Values Defined by video format
8-59

VideoResolution
8-60

Index
A
acquiring images

basic procedure 1-2
connecting to devices 3-1
overview 4-2
specifying a delay 4-24
specifying the amount 4-17
specifying the frame grab interval 4-18
specifying the timeout value 8-44
troubleshooting hardware 2-8
waiting for completion 4-26

adaptor names
listed 3-3

adaptors
definition 3-2

Audio Video Interleave (AVI) format
creating an AVI file object 4-33
logging images to disk 4-32

C
callback functions

as text string 6-13
creating 6-11
enabling and disabling 6-14
specifying 6-13
specifying as cell array 6-13
specifying as function handle 6-14

callback properties
list of 6-4

camcorders
support for 2-3

camera files 3-14
clear function 7-6
closepreview function 7-7
color spaces

of acquired image data 5-17
D
Data Translation devices

troubleshooting 2-10
delete function 7-8
deleting

image acquisition objects 3-27
device configuration files 3-14
device drivers

determining version 2-9
device IDs

finding 3-2
of image acquisition devices 3-4

device information structure
returned by imaqhwinfo 3-5

DeviceID property 8-7
DeviceInfo field 3-5
digital video

support for 2-3
digitizer configuration format (DCF) files 3-14
DirectX adaptor 3-3
DirectX drivers

finding version 2-11
disk files

logging image data to 4-32
DiskLogger property 8-9

using 4-32
DiskLoggerFrameCount property 8-11
disp function 7-9
displaying images

after acquiring 5-18
dt

adaptor name for Data Translation devices
3-3
I-1

Index

I-2
E
error events

definition 6-4
information returned 6-7

ErrorFcn property 8-12
event structures 6-6
EventLog property 8-13

retrieving information from 6-8
events

retrieving event information 6-6
types of 6-4

external triggers
configured in camera files 3-14
example 4-12

extracting image data 5-3

F
FireWire

image acquisition devices 2-2
flushdata function 7-11

using 4-29
frame delay

specifying 8-49
frame grabbers 2-2

setting up 2-4
frame memory limit

setting 4-28
frame rates

in example 5-5
relation to processing speed 2-5

FrameGrabInterval property 8-15
using 4-18

frames
determining dimensions of 5-13
determining how many have been acquired

4-19
memory usage 4-28
specifying the number to acquire 4-17

frames acquired events
definition 6-4
example 6-15
information returned 6-7

FramesAcquired property 8-17
FramesAcquiredFcn property 8-18
FramesAcquiredFcnCount property 8-19
FramesAvailable property 8-20

using 4-20
FramesPerTrigger property 8-21

using 4-19
freeing memory

used for image frames 4-29

G
get function 7-12

using 3-17
getdata function 7-13

specifying the timeout value 8-44
using 5-3

getselectedsource function 7-17
getsnapshot function 7-18

H
hardware triggers

configured in camera files 3-14
defined 4-7
example 4-12

I
IEEE-1394

image acquisition devices 2-2

Index
image acquisition
basic procedure 1-2
determining time of 5-20
getting hardware information 3-2
overview 4-2
previewing the image 2-6
retrieving timing information 5-19
setting up 2-4
specifying a delay 8-49
specifying the timeout value 8-44
time-based acquisition 5-5
using timers with 8-45

image acquisition devices 2-2
adaptors 3-2
connecting to 3-1
finding the device ID 3-2
setting up 2-4
troubleshooting 2-10

image acquisition objects
associating data with 8-56
avoiding global variables 8-43
configuring properties 3-17
creating 3-9
deleting 3-27
determining the device ID 8-7
determining type of 8-55
finding all existing objects 3-27
starting 3-24
state 3-24
stopping 3-24
types of 3-9
viewing all settable properties 3-21
viewing properties 3-17

image frames
bringing into the workspace 5-2
determining acquisition time 5-20
determining dimensions of 5-13

memory usage 4-28
images

acquiring 4-2
color spaces of acquired data 5-17
determining dimensions of 5-13
determining how many are available 4-20
determining how many have been acquired

4-19
extracting from memory 5-3
logging to disk 4-32
memory usage 4-28
retrieving acquired images 5-2
specifying how many to acquire 4-17
viewing acquired data 5-18
waiting for an acquisition to complete 4-26

imaging board 2-2
imaqcallback function

using default callback function 6-2
imaqfind function 7-20

using 3-27
imaqhelp function 7-22

getting property information 3-20
imaqhwinfo function 7-24

using 3-2
imaqmem function 7-27

using 4-28
imaqmontage function 7-29
imaqreset function 7-30
immediate triggers

defined 4-7
example 4-8

InitialTriggerTime property 8-22
using 5-19

isvalid function 7-31
I-3

Index

I-4
L
load function 7-32
logging image data

to disk 4-32
Logging property 8-24
logging state

overview 4-2
LoggingMode property 8-25

M
manual triggers

defined 4-7
example 4-10

matrox

adaptor for Matrox devices 3-3
Matrox devices

determining driver version 2-9
troubleshooting 2-8

Matrox MIL Configuration utility
using 2-9

memory buffer
determining number of frames in 4-20
emptying 4-29

memory usage
monitoring 4-28

Microsoft DirectX
adaptor 3-3
find version 2-11

N
Name property 8-26
NumberOfBands property 8-27
O
overloaded functions 7-2

P
Parent property 8-29
peekdata function 7-33

using 5-6
using before a trigger 5-8

preview function 7-35
using 2-6

preview window
closing 2-7
opening 2-6
troubleshooting 2-13

Previewing property 8-30
properties

determining their value 3-20
getting information about 3-20
of image acquisition objects 3-17

propinfo function 7-36
getting property information 3-20

R
region of interest (ROI)

specifying 8-32
ReturnedColorSpace property 8-31
ROIPosition property 8-32
Running property 8-34
running state

description of 3-24

S
save function 7-38
Selected property 8-35

Index
SelectedSourceName property 8-37
set function 7-39

using 3-21
Source property 8-38
SourceName property 8-40
start events

callback function property 8-41
definition 6-5
information returned 6-7

start function 7-41
StartFcn property 8-41
stop events

callback function property 8-42
definition 6-5
information returned 6-7

stop function 7-43
StopFcn property 8-42
synchronizing acquisition

example 4-12
system requirements

image acquisition 2-3

T
Tag property 8-43
television tuner boards

support for 2-3
time-based acquisition 5-5
Timeout property 8-44
timer events

definition 6-5
example 6-17
information returned 6-8

TimerFcn property 8-45
TimerPeriod property 8-46
timers

specifying period of 8-46

specifying with image acquisition 8-45
timing of acquisition

retrieving 5-19
trigger events

definition 6-5
information returned 6-7
specifying callback function 8-48

trigger function 7-44
TriggerCondition property 8-47

configuring 4-6
triggerconfig function 7-45
TriggerFcn property 8-48
TriggerFrameDelay property 8-49

using 4-24
triggerinfo function 7-47
TriggerRepeat property 8-50

using 4-25
triggers

configuring 4-3
configuring repeating triggers 4-25
controlling acquisition parameters 4-16
determining execution time 5-19
hardware 4-12
immediate 4-8
manual 4-10
specifying properties 4-5
specifying the type 4-7
specifying when they occur 8-47
types of 4-7

TriggersExecuted property 8-52
TriggerSource property 8-53

configuring 4-6
TriggerType property 8-54

configuring 4-6
types of triggers 4-7

troubleshooting
image acquisition hardware 2-8
I-5

Index

I-6
TV tuner boards
support for 2-3

Type property 8-55

U
USB

image acquisition devices 2-2
UserData property 8-56

V
vendor adaptors

definition 3-2
video cameras 2-2

setting up 2-4
video formats

specifying 3-12
specifying with device configuration files

3-14
video input objects

defined 3-9
running state 8-34
starting 3-24
state 3-24
stopping 3-24
viewing current state 3-11

video source objects
array of 8-38
currently selected source 8-35
displaying list of 3-15
names of 8-40
relation to video input objects 3-9
specifying selected object 3-15

VideoFormat property 8-57
videoinput function 7-49

using 3-9
VideoResolution property 8-59
viewing images 5-18

W
wait function 7-52

using 4-26
waiting for an acquisition to complete 4-26
Webcams

support for 2-3
winvideo

DirectX adaptor name 3-3
winvideo adaptor

troubleshooting hardware 2-10

	Preface
	What Is the Image Acquisition Toolbox?
	Related Products
	Configuration Notes
	About the Documentation
	Structure of the Documentation

	Typographical Conventions

	Getting Started
	Example: Basic Image Acquisition Procedure
	Overview
	Step 1: Install Your Image Acquisition Device
	Step 2: Retrieve Hardware Information
	Step 3: Create a Video Input Object
	Step 4: Preview the Video Stream (Optional)
	Step 5: Configure Object Properties (Optional)
	Step 6: Acquire Image Data
	Step 7: Clean Up

	Introduction
	Overview
	Toolbox Components
	System Requirements

	Setting Up Image Acquisition Hardware
	Resetting Your Image Acquisition Hardware
	A Note About Frame Rates and Processing Speed

	Previewing Data
	Opening a Preview Window
	Closing a Preview Window

	Troubleshooting
	Troubleshooting Matrox Hardware
	Troubleshooting Data Translation Hardware
	Troubleshooting Windows Video Hardware
	Troubleshooting a Preview Window

	Connecting to Hardware
	Getting Hardware Information
	Determining the Device Adaptor Name
	Determining the Device ID
	Determining Supported Video Formats

	Creating Image Acquisition Objects
	Creating a Video Input Object
	Specifying the Video Format
	Specifying the Selected Video Source Object

	Configuring Image Acquisition Object Properties
	Viewing the Values of Object Properties
	Viewing the Value of a Particular Property
	Getting Information About Object Properties
	Setting the Value of an Object Property

	Starting and Stopping a Video Input Object
	Deleting Image Acquisition Objects
	Saving and Loading Image Acquisition Objects

	Acquiring Image Data
	Overview
	Trigger Properties

	Setting the Values of Trigger Properties
	Specifying Trigger Type, Source, and Condition

	Specifying the Trigger Type
	Example: Using an Immediate Trigger
	Example: Using a Manual Trigger
	Example: Using a Hardware Trigger

	Controlling Logging Parameters
	Specifying Logging Mode
	Specifying the Number of Frames to Log
	Determining How Much Data Has Been Logged
	Determining How Many Frames Are Available
	Delaying Data Logging After a Trigger
	Specifying Multiple Triggers

	Waiting for an Acquisition to Finish
	Managing Memory Usage
	Monitoring Memory Usage
	Modifying the Frame Memory Limit
	Freeing Memory

	Logging Image Data to Disk
	Creating an AVI File Object for Logging
	Example: Logging Data to Disk

	Working with Acquired Image Data
	Overview
	Bringing Image Data into the MATLAB Workspace
	Moving Multiple Frames into the Workspace
	Viewing Frames in the Memory Buffer
	Bringing a Single Frame into the Workspace

	Working with Image Data in the MATLAB Workspace
	Determining the Dimensions of Image Data
	Determining the Data Type of Image Frames
	Determining the Color Space
	Viewing Acquired Data

	Retrieving Timing Information
	Determining When a Trigger Executed
	Determining When a Frame Was Acquired
	Example: Determining the Frame Delay Duration

	Using Events and Callbacks
	Example: Using the Default Callback Function
	Event Types
	Retrieving Event Information
	Event Structures
	Example: Accessing Data in the Event Log

	Creating and Executing Callback Functions
	Creating Callback Functions
	Specifying Callback Functions
	Example: Viewing a Sample Frame
	Example: Monitoring Memory Usage

	Function Reference
	Getting Command Line Function Help
	Functions — By Category
	clear
	closepreview
	delete
	disp
	flushdata
	get
	getdata
	getselectedsource
	getsnapshot
	imaqfind
	imaqhelp
	imaqhwinfo
	imaqmem
	imaqmontage
	imaqreset
	isvalid
	load
	peekdata
	preview
	propinfo
	save
	set
	start
	stop
	trigger
	triggerconfig
	triggerinfo
	videoinput
	wait

	Property Reference
	Properties – By Category
	Video Input Object Properties
	Video Source Object Properties
	DeviceID
	DiskLogger
	DiskLoggerFrameCount
	ErrorFcn
	EventLog
	FrameGrabInterval
	FramesAcquired
	FramesAcquiredFcn
	FramesAcquiredFcnCount
	FramesAvailable
	FramesPerTrigger
	InitialTriggerTime
	Logging
	LoggingMode
	Name
	NumberOfBands
	Parent
	Previewing
	ReturnedColorSpace
	ROIPosition
	Running
	Selected
	SelectedSourceName
	Source
	SourceName
	StartFcn
	StopFcn
	Tag
	Timeout
	TimerFcn
	TimerPeriod
	TriggerCondition
	TriggerFcn
	TriggerFrameDelay
	TriggerRepeat
	TriggersExecuted
	TriggerSource
	TriggerType
	Type
	UserData
	VideoFormat
	VideoResolution

	Index

